1 ( 0 0) |
1 ( 1 0) | 1 ( 1 1) |
1 ( 2 0) | 2 ( 2 1) | 1 ( 2 2) |
1 ( 3 0) | 3 ( 3 1) | 3 ( 3 2) | 1 ( 3 3) |
1 ( 4 0) | 4 ( 4 1) | 6 ( 4 2) | 4 ( 4 3) | 1 ( 4 4) |
1 ( 5 0) | 5 ( 5 1) | 10 ( 5 2) | 10 ( 5 3) | 5 ( 5 4) | 1 ( 5 5) |
1 ( 6 0) | 6 ( 6 1) | 15 ( 6 2) | 20 ( 6 3) | 15 ( 6 4) | 6 ( 6 5) | 1 ( 6 6) |
1 ( 7 0) | 7 ( 7 1) | 21 ( 7 2) | 35 ( 7 3) | 35 ( 7 4) | 21 ( 7 5) | 7 ( 7 6) | 1 ( 7 7) |
1 ( 8 0) | 8 ( 8 1) | 28 ( 8 2) | 56 ( 8 3) | 70 ( 8 4) | 56 ( 8 5) | 28 ( 8 6) | 8 ( 8 7) | 1 ( 8 8) |
1 ( 9 0) | 9 ( 9 1) | 36 ( 9 2) | 84 ( 9 3) | 126 ( 9 4) | 126 ( 9 5) | 84 ( 9 6) | 36 ( 9 7) | 9 ( 9 8) | 1 ( 9 9) |
1 ( 10 0) | 10 ( 10 1) | 45 ( 10 2) | 120 ( 10 3) | 210 ( 10 4) | 252 ( 10 5) | 210 ( 10 6) | 120 ( 10 7) | 45 ( 10 8) | 10 ( 10 9) | 1 ( 10 10) |
1 ( 11 0) | 11 ( 11 1) | 55 ( 11 2) | 165 ( 11 3) | 330 ( 11 4) | 462 ( 11 5) | 462 ( 11 6) | 330 ( 11 7) | 165 ( 11 8) | 55 ( 11 9) | 11 ( 11 10) | 1 ( 11 11) |
1 ( 12 0) | 12 ( 12 1) | 66 ( 12 2) | 220 ( 12 3) | 495 ( 12 4) | 792 ( 12 5) | 924 ( 12 6) | 792 ( 12 7) | 495 ( 12 8) | 220 ( 12 9) | 66 ( 12 10) | 12 ( 12 11) | 1 ( 12 12) |
1 ( 13 0) | 13 ( 13 1) | 78 ( 13 2) | 286 ( 13 3) | 715 ( 13 4) | 1287 ( 13 5) | 1716 ( 13 6) | 1716 ( 13 7) | 1287 ( 13 8) | 715 ( 13 9) | 286 ( 13 10) | 78 ( 13 11) | 13 ( 13 12) | 1 ( 13 13) |
1 ( 14 0) | 14 ( 14 1) | 91 ( 14 2) | 364 ( 14 3) | 1001 ( 14 4) | 2002 ( 14 5) | 3003 ( 14 6) | 3432 ( 14 7) | 3003 ( 14 8) | 2002 ( 14 9) | 1001 ( 14 10) | 364 ( 14 11) | 91 ( 14 12) | 14 ( 14 13) | 1 ( 14 14) |
— версия для печати Объяснение
N ое Число в треугольнике — это коэффициент, который будет стоять при x n [икс в степени эн], при раскрытии скобок в выражении (1+x) n [один плюс икс в степени эн].
Число ( n k) в треугольнике — это число способов из n-элементного множества выбрать k-элементное подмножество*.
Примечание
Треугольник Паскаля представляет собой таблицу, в ячейках которой стоят упорядоченные биномиальные коэффициенты для различных степеней сверху-вниз и слева-направо в порядке возрастания. Произвольный биноминальный коэффициент можно вычислить по следующей формуле:
( n k) = | n! (n-k)!k! |
Свойство
Каждое число, кроме первого получается сложением двух вышестоящих.
Пример
Рассмотрим число ( 4 2). Итак, у нас есть четырехэлементное множество, изобразим его стандартным образом — . Сколько же существует двуэлементых подмножеств этого множества? Вопрос не сложный, их можно явно перечислить. , , , , , — всего шесть штук, что в точности совпадает с данными Треугольника Паскаля.
*Без учета порядка, т.е. для нас множество совпадает с множеством .
- Треугольник Паскаля
- Натуральные степени бинома x + y
- Свойства треугольника Паскаля
- Определения
- Написать разложение вида: (x + y) 7
- Треугольник Паскаля — формула, свойства и применение
- Основная формула
- История открытия
- Отличительные черты
- Общие свойства
- Секреты треугольника
- Полномочия двойки
- Силы одиннадцати
- Совершенные квадраты
- Комбинаторные варианты
- Действия с биномами
- 🔥 Видео
Видео:#26. Треугольник Паскаля как пример работы вложенных циклов | Python для начинающихСкачать
Треугольник Паскаля
Треугольником Паскаля называется бесконечная треугольная таблица, в которой на вершине и по боковым сторонам стоят единицы, каждое из остальных чисел равно сумме двух чисел, стоящих над ним в предшествующей строке.
№ | Треугольник Паскаля |
0 | 1 |
1 | 1 1 |
2 | 1 2 1 |
3 | 1 3 3 1 |
4 | 1 4 6 4 1 |
5 | 1 5 10 10 5 1 |
6 | 1 6 15 20 15 6 1 |
… | … |
Треугольник Паскаля можно получить из таблицы натуральных степеней бинома x + y
Натуральные степени бинома x + y
№ | Степень | Разложение в сумму одночленов |
0 | (x + y) 0 = | 1 |
1 | (x + y) 1 = | 1x + 1y |
2 | (x + y) 2 = | 1x 2 + 2xy + 1y 2 |
3 | (x + y) 3 = | 1x 3 + 3x 2 y + 3xy 2 + 1y 3 |
4 | (x + y) 4 = | 1x 4 + 4x 3 y + 6x 2 y 2 + 4xy 3 + 1y 4 |
5 | (x + y) 5 = | 1x 5 + 5x 4 y + 10x 3 y 2 + 10x 2 y 3 + 5xy 4 + 1y 5 |
6 | (x + y) 6 = | 1x 6 + 6x 5 y + 15x 4 y 2 + 20x 3 y 3 + 15x 2 y 4 + 6xy 5 + 1y 6 |
… | … | … |
Свойства треугольника Паскаля
- Сумма чисел n-ной строки (отсчет ведется с нуля) треугольника Паскаля равна 2 n . Действительно, при переходе от каждой строки к следующей сумма членов удваивается, а для нулевой строки она равна 2 0 =1 .
- Все строки треугольника Паскаля симметричны. Потому что при переходе от каждой строки к следующей свойство симметричности сохраняется, а нулевая строка симметрична.
- Каждое число в треугольнике Паскаля равно Cn k , где n — номер строки, k — номер (отсчет ведется с нуля) элемента в строке.
- Каждое число треугольника Паскаля, уменьшенное на единицу, равно сумме всех чисел, заполняющих параллелограмм, ограниченный диагоналями, на пересечении которых находится этот элемент.
- Вдоль диагоналей, параллельных сторонам треугольника, выстроены треугольные числа, тетраэдрические числа и т.д.
- Если посчитать для каждой восходящей диагонали треугольника Паскаля сумму всех стоящих на этой диагонали чисел, то получится соответствующее число Фибоначчи.
Определения
Треугольными числами называется количество шаров, которые можно выложить в виде равностороннего треугольника.
Тетраэдрическими числами называется количество шаров, которые можно выложить в виде правильного тетраэдра.
Последовательность f1 = f2 = 1 , fn = fn−1 + fn−2 при n>2 называется последовательностью Фибоначчи, а ее члены — числами Фибоначчи.
Написать разложение вида: (x + y) 7
Воспользовавшись строкой треугольника Паскаля с номером 6 и применив основное свойство треугольника Паскаля, получим строку с номером 7:
Видео:Треугольник ПаскаляСкачать
Треугольник Паскаля — формула, свойства и применение
Видео:4.3 Треугольник Паскаля 1. "Поколение Python": курс для продвинутых. Курс StepikСкачать
Основная формула
Строки треугольника обычно нумеруются, начиная со строки n = 0 в верхней части. Записи в каждой строке целочисленные и нумеруются слева, начиная с k = 0, обычно располагаются в шахматном порядке относительно чисел в соседних строчках. Построить фигуру можно следующим образом:
- В центре верхней части листа ставится цифра «1».
- В следующем ряду — две единицы слева и справа от центра (получается треугольная форма).
- В каждой последующей строке ряд будет начинаться и заканчиваться числом «1». Внутренние члены вычисляются путём суммирования двух цифр над ним.
Запись в n строке и k столбце паскалевской фигуры обозначается (n k). Например, уникальная ненулевая запись в самой верхней строке (0 0) = 1. С помощью этого конструкция предыдущего абзаца может быть записана следующим образом, образуя формулу треугольника Паскаля (n k) = (n — 1 k-1) + (n — 1 k), для любого неотрицательного целого числа n и любого целого числа k от 0 до n включительно. Трёхмерная версия называется пирамидой или тетраэдром, а общие — симплексами.
Видео:ТРЕУГОЛЬНИК ПАСКАЛЯ 😊 ЧАСТЬ I #shorts #математика #егэ #задачи #задачаналогику #егэ2022 #огэ2022Скачать
История открытия
Паскаль ввёл в действие многие ранее недостаточно проверенные способы использования чисел треугольника, и он подробно описал их в, пожалуй, самом раннем из известных математических трактатов, специально посвящённых этому вопросу, в труде об арифметике Traité du triangle (1665). За столетия до того обсуждение чисел возникло в контексте индийских исследований комбинаторики и биномиальных чисел, а у греков были работы по «фигурным числам».
Из более поздних источников видно, что биномиальные коэффициенты и аддитивная формула для их генерации были известны ещё до II века до нашей эры по работам Пингала. К сожалению, бо́льшая часть трудов была утеряна. Варахамихира около 505 года дал чёткое описание аддитивной формулы, а более подробное объяснение того же правила было дано Халаюдхой (около 975 года). Он также объяснил неясные ссылки на Меру-прастаара, лестницы у горы Меру, дав первое сохранившееся определение расположению этих чисел, представленных в виде треугольника.
Примерно в 850 году джайнский математик Махавира вывел другую формулу для биномиальных коэффициентов, используя умножение, эквивалентное современной формуле. В 1068 году Бхаттотпала во время своей исследовательской деятельности вычислил четыре столбца первых шестнадцати строк. Он был первым признанным математиком, который уравнял аддитивные и мультипликативные формулы для этих чисел.
Примерно в то же время персидский учёный Аль-Караджи (953–1029) написал книгу (на данный момент утраченную), в которой содержалось первое описание треугольника Паскаля. Позднее работа была переписана персидским поэтом, астрономом и математиком Омаром Хайямом (1048–1131). Таким образом, в Иране фигура упоминается как треугольник Хайяма.
Известно несколько теорем, связанных с этой темой, включая биномы. Хайям использовал метод нахождения n-x корней, основанный на биномиальном разложении и, следовательно, на одноимённых коэффициентах. Треугольник был известен в Китае в начале XI века благодаря работе китайского математика Цзя Сианя (1010–1070). В XIII веке Ян Хуэй (1238–1298) представил этот способ, и поэтому в Китае он до сих пор называется треугольником Ян Хуэя.
На западе биномиальные коэффициенты были рассчитаны Жерсонидом в начале XIV века, он использовал мультипликативную формулу. Петрус Апиан (1495–1552) опубликовал полный треугольник на обложке своей книги примерно в 1527 году. Это была первая печатная версия фигуры в Европе. Майкл Стифель представил эту тему как таблицу фигурных тел в 1544 году.
В Италии паскалевский треугольник зовут другим именем, в честь итальянского алгебраиста Никколо Фонтана Тарталья (1500–1577). Вообще, современное имя фигура приобрела благодаря Пьеру Раймонду до Монтрмору (1708), который назвал треугольник «Таблица Паскаля для сочетаний» (дословно: Таблица мистера Паскаля для комбинаций) и Абрахамом Муавром (1730).
Видео:Треугольник ПаскаляСкачать
Отличительные черты
Треугольник Паскаля и его свойства — тема довольно обширная. Главное, в нём содержится множество моделей чисел. Обзор следует начать с простого — ряды:
- Сумма элементов одной строки в два раза больше суммы строки, предшествующей ей. Например, строка 0 (самая верхняя) имеет значение 1, строчка 1–2, а 2 имеет значение 4 и т. д. Это потому что каждый элемент в строке производит два элемента в следующем ряду: один слева и один справа. Сумма элементов строки n равна 2 n .
- Принимая произведение элементов в каждой строке, последовательность продуктов можно связать с основанием натурального логарифма.
- В треугольнике Паскаля через бесконечный ряд Нилаканты можно найти число Пи.
- Значение строки, если каждая запись считается десятичным знаком (имеется в виду, что числа больше 9 переносятся соответственно), является степенью 11 (11 n для строки n). Таким образом, в строке 2 ⟨1, 2, 1⟩ становится 11 2 , равно как ⟨1, 5, 10, 10, 5, 1⟩ в строке пять становится (после переноса) 161, 051, что составляет 11 5 . Это свойство объясняется установкой x = 10 в биномиальном разложении (x + 1) n и корректировкой значений в десятичной системе.
- Некоторые числа в треугольнике Паскаля соотносятся с числами в треугольнике Лозанича.
- Сумма квадратов элементов строки n равна среднему элементу строки 2 n. Например, 1 2 + 4 2 + 6 2 + 4 2 + 1 2 = 70.
- В любой строчке n, где n является чётным, средний член за вычетом члена в двух точках слева равен каталонскому числу (n / 2 + 1).
- В строчке р, где р представляет собой простое число, все члены в этой строке, за исключением 1s, являются кратными р.
- Чётность. Для измерения нечётных терминов в строке n необходимо преобразовать n в двоичную форму. Пусть x будет числом 1s в двоичном представлении. Тогда количество нечётных членов будет 2 х . Эти числа являются значениями в последовательности Гулда.
- Каждая запись в строке 2 n -1, n ≥ 0, является нечётной.
- Полярность. Когда элементы строки треугольника Паскаля складываются и вычитаются вместе последовательно, каждая строка со средним числом, означающим строки с нечётным числом целых чисел, даёт 0 в качестве результата.
Диагонали треугольника содержат фигурные числа симплексов. Например:
- Идущие вдоль левого и правого краёв диагонали содержат только 1.
- Рядом с рёбрами диагонали содержат натуральные числа по порядку.
- Двигаясь внутрь, следующая пара содержит треугольные числа по порядку.
- Следующая пара — тетраэдрические, а следующая пара — числа пятиугольника.
Существуют простые алгоритмы для вычисления всех элементов в строке или диагонали без вычисления других элементов или факториалов.
Видео:Числа сочетаний. Треугольник Паскаля | Ботай со мной #059 | Борис Трушин |Скачать
Общие свойства
Образец, полученный путём раскраски только нечётных чисел, очень похож на фрактал, называемый треугольником Серпинского. Это сходство становится всё более точным, так как рассматривается больше строк в пределе, когда число рядов приближается к бесконечности, получающийся в результате шаблон представляет собой фигуру, предполагающую фиксированный периметр. В целом числа могут быть окрашены по-разному в зависимости от того, являются ли они кратными 3, 4 и т. д.
В треугольной части сетки количество кратчайших путей от заданного до верхнего угла треугольника является соответствующей записью в паскалевском треугольнике. На треугольной игровой доске Плинко это распределение должно давать вероятности выигрыша различных призов. Если строки треугольника выровнены по левому краю, диагональные полосы суммируются с числами Фибоначчи.
Благодаря простому построению факториалами можно дать очень простое представление фигуры Паскаля в терминах экспоненциальной матрицы: треугольник — это экспонента матрицы, которая имеет последовательность 1, 2, 3, 4… на её субдиагонали, а все другие точки — 0.
Количество элементов симплексов фигуры можно использовать в качестве справочной таблицы для количества элементов (рёбра и углы) в многогранниках (треугольник, тетраэдр, квадрат и куб).
Шаблон, созданный элементарным клеточным автоматом с использованием правила 60, является в точности паскалевским треугольником с биномиальными коэффициентами, приведёнными по модулю 2. Правило 102 также создаёт этот шаблон, когда завершающие нули опущены. Правило 90 создаёт тот же шаблон, но с пустой ячейкой, разделяющей каждую запись в строках. Фигура может быть расширена до отрицательных номеров строк.
Видео:4.3 Треугольник Паскаля 2. "Поколение Python": курс для продвинутых. Курс StepikСкачать
Секреты треугольника
Конечно, сейчас большинство расчётов для решения задач не в классе можно сделать с помощью онлайн-калькулятора. Как пользоваться треугольником Паскаля и для чего он нужен, обычно рассказывают в школьном курсе математики. Однако его применение может быть гораздо шире, чем принято думать.
Начать следует со скрытых последовательностей. Первые два столбца фигуры не слишком интересны — это только цифры и натуральные числа. Следующий столбец — треугольные числа. Можно думать о них, как о серии точек, необходимых для создания групп треугольников разных размеров.
Точно так же четвёртый столбец — это тетраэдрические числа или треугольные пирамидальные. Как следует из их названия, они представляют собой раскладку точек, необходимых для создания пирамид с треугольными основаниями.
Столбцы строят таким образом, чтобы описывать «симплексы», которые являются просто экстраполяциями идеи тетраэдра в произвольные измерения. Следующий столбец — это 5-симплексные числа, затем 6-симплексные числа и так далее.
Полномочия двойки
Если суммировать каждую строку, получатся степени основания 2 начиная с 2⁰ = 1. Если изобразить это в таблице, то получится следующее:
1 | ||||||||||||||
1 | + | 1 | = | 2 | ||||||||||
1 | + | 2 | + | 1 | = | 4 | ||||||||
1 | + | 3 | + | 3 | + | 1 | = | 8 | ||||||
1 | + | 4 | + | 6 | + | 4 | + | 1 | = | 16 | ||||
1 | + | 5 | + | 10 | + | 10 | + | 5 | + | 1 | = | 32 | ||
1 | + | 6 | + | 15 | + | 20 | + | 15 | + | 6 | + | 1 | = | 64 |
Суммирование строк показывает силы базы 2.
Силы одиннадцати
Треугольник также показывает силы основания 11. Всё, что нужно сделать, это сложить числа в каждом ряду вместе. Как показывает исследовательский опыт, этого достаточно только для первых пяти строк. Сложности начинаются, когда записи состоят из двузначных чисел. Например:
1 | = | 11° |
11 | = | 11¹ |
121 | = | 11² |
1331 | = | 11³ |
Оказывается, всё, что нужно сделать — перенести десятки на одно число слева.
Совершенные квадраты
Если утверждать, что 4² — это 6 + 10 = 16, то можно найти идеальные квадраты натуральных чисел в столбце 2, суммируя число справа с числом ниже. Например:
- 2² → 1 + 3 = 4
- 3² → 3 + 6
- 4² → 6 + 10 = 16 и так далее.
Комбинаторные варианты
Чтобы раскрыть скрытую последовательность Фибоначчи, которая на первый взгляд может отсутствовать, нужно суммировать диагонали лево-выровненного паскалевского треугольника. Первые 7 чисел в последовательности Фибоначчи: 1, 1, 2, 3, 5, 8, 13… найдены. Используя исходную ориентацию, следует заштриховать все нечётные числа, и получится изображение, похожее на знаменитый фрактальный треугольник Серпинского.
Возможно, самое интересное соотношение, найденное в треугольнике — это то, как можно использовать его для поиска комбинаторных чисел, поскольку его первые шесть строк написаны с помощью комбинаторной записи. Поэтому, если нужно рассчитать 4, стоит выбрать 2, затем максимально внимательно посмотреть на пятую строку, третью запись (поскольку счёт с нуля), и будет найден ответ.
Видео:Зачем нужен треугольник Паскаля (спойлер: для формул сокращённого умножения)Скачать
Действия с биномами
Например, есть бином (x + y), и стоит задача повысить его до степени, такой как 2 или 3. Обычно нужно пройти долгий процесс умножения (x + y)² = (x + y)(x + y) и т. д. Если воспользоваться треугольником, решение будет найдено гораздо быстрее. К примеру, нужно расширить (x + y)³. Поскольку следует повышать (x + y) до третьей степени, то необходимо использовать значения в четвёртом ряду фигуры Паскаля (в качестве коэффициентов расширения). Затем заполнить значения x и y. Получится следующее: 1 x³ + 3 x²y + 3 xy² + 1 y³. Степень каждого члена соответствует степени, до которой возводится (x + y).
В виде более удобной формулы этот процесс представлен в теореме бинома. Как известно, всё лучше разбирать на примерах. Итак — (2x – 3)³. Пусть x будет первым слагаемым, а y — вторым. Тогда x = 2x, y = –3, n = 3 и k — целые числа от 0 до n = 3, в этом случае k = . Следует внести эти значения в формулу. Затем заполнить значения для k, которое имеет 4 разные версии, их нужно сложить вместе. Лучше упростить условия с показателями от нуля до единицы.
Как известно, комбинаторные числа взяты из треугольника, поэтому можно просто найти четвёртую строку и подставить в значения 1, 3, 3, 1 соответственно, используя соответствующие цифры Паскаля 1, 3, 3, 1. Последнее — необходимо завершить умножение и упрощение, в итоге должно получиться: 8 x³ — 36 x² + 54x — 27. С помощью этой теоремы можно расширить любой бином до любой степени, не тратя время на умножение.
Биномиальное распределение описывает распределение вероятностей на основе экспериментов, которые можно разделить на группы с двумя возможными исходами. Самый классический пример этого — бросание монеты. Например, есть задача выбросить «решку» — успех с вероятностью p. Тогда выпадение «орла» является случаем «неудачи» и имеет вероятность дополнения 1 – p.
Если спроектировать этот эксперимент с тремя испытаниями, с условием, что нужно узнать вероятность выпадения «решки», можно использовать функцию вероятности массы (pmf) для биномиального распределения, где n — это количество испытаний, а k — это число успехов. Предполагаемая вероятность удачи — 0,5 (р = 0,5). Самое время обратиться к треугольнику, используя комбинаторные числа: 1, 3, 3, 1. Вероятность получить ноль или три «решки» составляет 12,5%, в то время как переворот монеты один или два раза на сторону «орла» — 37,5%. Вот так математика может применяться в жизни.
🔥 Видео
Треугольник ПаскаляСкачать
Java - Структура - Треугольник ПаскаляСкачать
Треугольник Паскаля Python. Коэффициенты для Бинома НьютонаСкачать
Бином Ньютона и треугольник Паскаля | Учитель года Москвы — 2020Скачать
Несколько красивых свойств треугольника ПаскаляСкачать
Математические секреты треугольника ПаскаляСкачать
39 Сумма чисел строки треугольника ПаскаляСкачать
Числа Фибоначчи и треугольник ПаскаляСкачать
Удивительный треугольник Паскаля | Лекции по математике – Яков Ерусалимский | Научпоп | НаукаPROСкачать
Как треугольник Паскаля поможет умножать без калькулятораСкачать
БИНОМ Ньютона | треугольник ПаскаляСкачать
Многочлен полином Жегалкина Метод неопределенных коэффициентов Метод треугольника ПаскаляСкачать