Точка пи на 8 на числовой окружности

Как обозначать числа с пи на числовой окружности?

Надеюсь, вы уже прочитали про числовую окружность и знаете, почему она называется числовой, где на ней начало координат и в какой стороне положительное направление. Если нет, то бегом читать ! Если вы, конечно, собираетесь находить точки на числовой окружности.

Видео:Как искать точки на тригонометрической окружности.Скачать

Как искать точки на тригонометрической окружности.

Обозначаем числа (2π), (π), (frac), (-frac), (frac)

Как вы знаете из прошлой статьи, радиус числовой окружности равен (1). Значит, длина окружности равняется (2π) (вычислили по формуле (l=2πR)). С учетом этого отметим (2π) на числовой окружности. Чтобы отметить это число нужно пройти от (0) по числовой окружности расстояние равно (2π) в положительном направлении, а так как длина окружности (2π), то получается, что мы сделаем полный оборот. То есть, числу (2π) и (0) соответствует одна и та же точка. Не переживайте, несколько значений для одной точки — это нормально для числовой окружности.

Точка пи на 8 на числовой окружности

Теперь обозначим на числовой окружности число (π). (π) – это половина от (2π). Таким образом, чтобы отметить это число и соответствующую ему точку, нужно пройти от (0) в положительном направлении половину окружности.

Точка пи на 8 на числовой окружности

Отметим точку (frac) . (frac) – это половина от (π), следовательно чтобы отметить это число, нужно от (0) пройти в положительном направлении расстояние равное половине (π), то есть четверть окружности.

Точка пи на 8 на числовой окружности

Обозначим на окружности точки (-) (frac) . Двигаемся на такое же расстояние, как в прошлый раз, но в отрицательном направлении.

Точка пи на 8 на числовой окружности

Нанесем (-π). Для этого пройдем расстояние равное половине окружности в отрицательном направлении.

Точка пи на 8 на числовой окружности

Теперь рассмотрим пример посложнее. Отметим на окружности число (frac) . Для этого дробь (frac) переведем в смешанный вид (frac) (=1) (frac) , т.е. (frac) (=π+) (frac) . Значит, нужно от (0) в положительную сторону пройти расстояние в пол окружности и еще в четверть.

Точка пи на 8 на числовой окружности

Задание 1. Отметьте на числовой окружности точки (-2π),(-) (frac) .

Видео:Точки на числовой окружностиСкачать

Точки на числовой окружности

Обозначаем числа (frac), (frac), (frac)

Выше мы нашли значения в точках пересечения числовой окружности с осями (x) и (y). Теперь определим положение промежуточных точек. Для начала нанесем точки (frac) , (frac) и (frac) .
(frac) – это половина от (frac) (то есть, (frac) (=) (frac) (:2)) , поэтому расстояние (frac) – это половина четверти окружности.

Точка пи на 8 на числовой окружности

(frac) – это треть от (π) (иначе говоря, (frac) (=π:3)), поэтому расстояние (frac) – это треть от полукруга.

Точка пи на 8 на числовой окружности

(frac) – это половина (frac) (ведь (frac) (=) (frac) (:2)) поэтому расстояние (frac) – это половина от расстояния (frac) .

Точка пи на 8 на числовой окружности

Вот так они расположены друг относительно друга:

Точка пи на 8 на числовой окружности

Замечание: Расположение точек со значением (0), (frac) ,(π), (frac) , (frac) , (frac) , (frac) лучше просто запомнить. Без них числовая окружность, как компьютер без монитора, вроде бы и полезная штука, а использовать крайне неудобно.

Разные расстояние на окружности наглядно:

Точка пи на 8 на числовой окружностиТочка пи на 8 на числовой окружности

Точка пи на 8 на числовой окружности Точка пи на 8 на числовой окружности

Видео:10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Обозначаем числа (frac), (-frac), (frac)

Обозначим на окружности точку (frac) , для этого выполним следующие преобразования: (frac) (=) (frac) (=) (frac) (+) (frac) (=π+) (frac) . Отсюда видно, что от нуля в положительную сторону надо пройти расстояние (π), а потом еще (frac) .

Точка пи на 8 на числовой окружности

Отметим на окружности точку (-) (frac) . Преобразовываем: (-) (frac) (=-) (frac) (-) (frac) (=-π-) (frac) . Значит надо от (0) пройти в отрицательную сторону расстояние (π) и еще (frac) .

Точка пи на 8 на числовой окружности

Нанесем точку (frac) , для этого преобразуем (frac) (=) (frac) (=) (frac) (-) (frac) (=2π-) (frac) . Значит, чтобы поставить точку со значением (frac) , надо от точки со значением (2π) пройти в отрицательную сторону расстояние (frac) .

Точка пи на 8 на числовой окружности

Видео:Числовая окружность | Алгебра 10 класс #8 | ИнфоурокСкачать

Числовая окружность | Алгебра 10 класс #8 | Инфоурок

Обозначаем числа (10π), (-3π), (frac) ,(frac), (-frac), (-frac)

Запишем (10π) в виде (5 cdot 2π). Вспоминаем, что (2π) – это расстояние равное длине окружности, поэтому чтобы отметить точку (10π), нужно от нуля пройти расстояние равное (5) окружностям. Нетрудно догадаться, что мы окажемся снова в точке (0), просто сделаем пять оборотов.

Точка пи на 8 на числовой окружности

Из этого примера можно сделать вывод:

Числам с разницей в (2πn), где (n∈Z) (то есть (n) — любое целое число) соответствует одна и та же точка.

То есть, чтобы поставить число со значением больше (2π) (или меньше (-2π)), надо выделить из него целое четное количество (π) ((2π), (8π), (-10π)…) и отбросить. Тем самым мы уберем из числа, не влияющие на положение точки «пустые обороты».

Точке, которой соответствует (0), также соответствуют все четные количества (π) ((±2π),(±4π),(±6π)…).

Теперь нанесем на окружность (-3π). (-3π=-π-2π), значит (-3π) и (–π) находятся в одном месте на окружности (так как отличаются на «пустой оборот» в (-2π)).

Точка пи на 8 на числовой окружности

Кстати, там же будут находиться все нечетные (π).

Точке, которой соответствует (π), также соответствуют все нечетные количества (π) ((±π),(±3π),(±5π)…).

Сейчас обозначим число (frac) . Как обычно, преобразовываем: (frac) (=) (frac) (+) (frac) (=3π+) (frac) (=2π+π+) (frac) . Два пи – отбрасываем, и получается что, для обозначения числа (frac) нужно от нуля в положительную сторону пройти расстояние равное (π+) (frac) (т.е. половину окружности и еще четверть).

Точка пи на 8 на числовой окружности

Отметим (frac) . Вновь преобразования: (frac) (=) (frac) (=) (frac) (+) (frac) (=5π+) (frac) (=4π+π+) (frac) . Ясно, что от нуля надо пройти расстояние равное (π+) (frac) – и мы найдем место точки (frac) .

Точка пи на 8 на числовой окружности

Нанесем на окружность число (-) (frac) .
(-) (frac) (= -) (frac) (-) (frac) (=-10π-) (frac) . Значит, место (-) (frac) совпадает с местом числа (-) (frac) .

Точка пи на 8 на числовой окружности

Обозначим (-) (frac) .
(-) (frac) (=-) (frac) (+) (frac) (=-5π+) (frac) (=-4π-π+) (frac) . Для обозначение (-) (frac) , на числовой окружности надо от точки со значением (–π) пройти в положительную сторону (frac) .

Видео:Тригонометрическая окружность. Как выучить?Скачать

Тригонометрическая окружность. Как выучить?

где будет находится число П/8 на числовой окружности

Точка пи на 8 на числовой окружности

Точка пи на 8 на числовой окружности

Я например решаю так:
перевожу в обычные градусы

Я думаю так легче найти число пи/8 на числовой окружности.

Видео:ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по Математике

Другие вопросы из категории

велосипедист проехал на 9 минут быстрее, чем второй, а еще через 27 минут поравнялся со вторым. Найдите скорость второго велосипедиста. Ответ выразите в км/ч

с помощью графика найдите значение функции, соответствующее значению аргумента, равному -0,5

Видео:Соответствие чисел точкам числовой окружностиСкачать

Соответствие чисел точкам числовой окружности

Читайте также

имеется ли на числовой окружности точка,абсцисса или ордината которой равна
п/4

полученное Сережей в степень с показателем k, где k — четное число. Он получил 1024. Найдите хотя бы одну пару значений m и k, которые могли бы использовать Сережа и его брат.

деленный на 2)с объяснением

Расположите в порядке возрастания числа:
a)cos40(градусов); cos80(градусов); cos120(градусов);cos160(градусов)
b)sin20(градусов); sin110(градусов); sin210(градусов); sin 400(градусов)
и как это на числовой окружности показать?

Видео:Алгебра 10 класс. 20 сентября. Числовая окружность #6 координаты точекСкачать

Алгебра 10 класс. 20 сентября. Числовая окружность #6 координаты точек

Единичная числовая окружность на координатной плоскости

п.1. Понятие тригонометрии

Тригонометрия берёт своё начало в Древней Греции. Само слово «тригонометрия» по-гречески означает «измерение треугольников». Эта наука в течение тысячелетий используется землемерами, архитекторами и астрономами.
Начиная с Нового времени, тригонометрия заняла прочное место в физике, в частности, при описании периодических процессов. Например, переменный ток в розетке генерируется в периодическом процессе. Поэтому любой электрический или электронный прибор у вас в доме: компьютер, смартфон, микроволновка и т.п., — спроектирован с использованием тригонометрии.

Базовым объектом изучения в тригонометрии является угол.

Предметом изучения тригонометрии как раздела математики выступают:
1) взаимосвязи между углами и сторонами треугольника, которые называют тригонометрическими функциями;
2) использование тригонометрических функций в геометрии.

п.2. Числовая окружность

Мы уже знакомы с числовой прямой (см. §16 справочника для 8 класса) и координатной плоскостью (см. §35 справочника для 7 класса), с помощью которых создаются графические представления числовых промежутков и функций. Это удобный инструмент моделирования, с помощью которого можно провести анализ, начертить график, найти область допустимых значений и решить задачу.
Для работы с углами и их функциями существует аналогичный инструмент – числовая окружность.

Точка пи на 8 на числовой окружностиЧисловая окружность (тригонометрический круг) – это окружность единичного радиуса R=1 с центром в начале координат (0;0).
Точка с координатами (1;0) является началом отсчета , ей соответствует угол, равный 0.
Углы на числовой окружности отсчитываются против часовой стрелки. Направление движения против часовой стрелки является положительным ; по часовой стрелке – отрицательным .
Отметим на числовой окружности углы 30°, 45°, 90°, 120°, 180°, а также –30°, –45°, –90&deg, –120°, –180°.Точка пи на 8 на числовой окружности

п.3. Градусная и радианная мера угла

Углы можно измерять в градусах или в радианах.
Известно, что развернутый угол, дуга которого равна половине окружности, равен 180°. Прямой угол, дуга которого равна четверти окружности, равен 90°. Тогда полная, замкнутая дуга окружности составляет 360°.
Приписывание развернутому углу меры в 180°, а прямому 90°, достаточно произвольно и уходит корнями в далёкое прошлое. С таким же успехом это могло быть 100° и 50°, или 200° и 100° (что, кстати, предлагалось одним из декретов во времена французской революции 1789 г.).

В целом, более обоснованной и естественной для измерения углов является радианная мера.

Точка пи на 8 на числовой окружностиНайдем радианную меру прямого угла ∠AOB=90°.
Построим окружность произвольного радиуса r с центром в вершине угла – точке O. Длина этой окружности: L=2πr.
Длина дуги AB: (l_=frac=frac=frac.)
Тогда радианная мера угла: $$ angle AOB=frac<l_>=frac=frac $$
30°45°60°90°120°135°150°180°270°360°
(frac)(frac)(frac)(frac)(frac)(frac)(frac)(pi)(frac)(2pi)

п.4. Свойства точки на числовой окружности

Построим числовую окружность. Обозначим O(0;0), A(1;0)

Точка пи на 8 на числовой окружностиКаждому действительному числу t на числовой окружности соответствует точка Μ(t).
При t=0, M(0)=A.
При t>0 двигаемся по окружности против часовой стрелки, описывая дугу
AM=t. Точка M — искомая.
При t Например:
Отметим на числовой окружности точки, соответствующие (frac, frac, frac, frac, pi), а также (-frac, -frac, -frac, -frac, -pi)
Для этого нужно отложить углы 30°, 45°, 90°, 120°, 180° и –30°, –45°, –90°, –120°, –180° с вершиной в начале координат и отметить соответствующие дуги на числовой окружности.
Точка пи на 8 на числовой окружности
Отметим на числовой окружности точки, соответствующие (frac, frac, frac), и (-frac).
Все четыре точки совпадают, т.к. begin Mleft(fracright)=Mleft(frac+2pi kright)\ frac-2pi=-frac\ frac+2pi=frac\ frac+4pi=frac end

Точка пи на 8 на числовой окружности

п.5. Интервалы и отрезки на числовой окружности

Каждому действительному числу соответствует точка на числовой окружности. Соответственно, числовые промежутки (см. §16 справочника для 8 класса) получают свои отображения в виде дуг.

Числовой промежутокСоответствующая дуга числовой окружности
Отрезок
$$ -frac lt t lt frac $$ Точка пи на 8 на числовой окружности
а также, с учетом периода $$ -frac+2pi klt tltfrac+2pi k $$
Точка пи на 8 на числовой окружности
Интервал
$$ -frac leq t leq frac $$ Точка пи на 8 на числовой окружности
а также, с учетом периода $$ -frac+2pi kleq tleqfrac+2pi k $$
Точка пи на 8 на числовой окружности
Полуинтервал
$$ -frac leq t ltfrac $$ Точка пи на 8 на числовой окружности
а также, с учетом периода $$ -frac+2pi kleq tltfrac+2pi k $$
Точка пи на 8 на числовой окружности

п.6. Примеры

Пример 1. Точка E делит числовую окружность во второй четверти в отношении 1:2.
Чему равны дуги AE, BE, EC, ED в градусах и радианах?

Точка пи на 8 на числовой окружности

Угловая мера четверти 90°. При делении в отношении 1:2 получаем дуги 30° и 60° соответственно: begin BE=30^=frac.\ EC=60^=frac.\ AE=EC+CD=90^+30^=120^=frac.\ ED=EC+CD=60^+90^=150^=frac. end

Пример 2. Найдите на числовой окружности точку, соответствующую данному числу: (-frac; frac; frac; frac).

Находим соответствующие углы в градусах и откладываем с помощью транспортира (положительные – против часовой стрелки, отрицательные – по часовой стрелке), отмечаем соответствующие точки на числовой окружности. begin -frac=-90^, frac=135^\ frac=210^, frac=315^ end

Точка пи на 8 на числовой окружности

Пример 3. Найдите на числовой окружности точку, соответствующую данному числу: (-frac; 5pi; frac; frac).

Выделяем из дроби целую часть, отнимаем/прибавляем один или больше полных оборотов (2πk — четное количество π), чтобы попасть в промежуток от 0 до 2π.
Далее – действуем, как в примере 2. begin -frac=fraccdotpi=-6pi+fracrightarrow frac=90^\ 5pi=4pi+pirightarrow pi=180^\ frac=fracpi=3pi-fracrightarrow pi-frac=frac\ frac=fracpi=7pi-fracrightarrow pi-frac=frac end

Точка пи на 8 на числовой окружности

Пример 4. В какой четверти числовой окружности находится точка, соответствующая числу: 2; 4; 5; 7.

Точка пи на 8 на числовой окружностиСравниваем каждое число с границами четвертей: begin 0, fracpi2approxfrac=1,57, piapprox 3,14\ 3pi 3cdot 3,14\ fracapprox frac=4,71, 2piapprox 6,28 end

(fracpi2lt 2lt pi Rightarrow ) угол 2 радиана находится во 2-й четверти
(pilt 4lt frac Rightarrow ) угол 4 радиана находится в 3-й четверти
(fraclt 5lt 2pi Rightarrow ) угол 5 радиана находится в 4-й четверти
(7gt 2pi), отнимаем полный оборот: (0lt 7-2pilt fracpi2Rightarrow) угол 7 радиан находится в 1-й четверти.

Пример 5. Изобразите на числовой окружности множество точек ((kinmathbb)), запишите количество полученных базовых точек.

$$ frac $$$$ -frac+2pi k $$
Точка пи на 8 на числовой окружности
Четыре базовых точки, через каждые 90°
Точка пи на 8 на числовой окружности
Две базовых точки, через каждые 180°
$$ frac+frac $$$$ -frac $$
Точка пи на 8 на числовой окружности
Три базовых точки, через каждые 120°
Точка пи на 8 на числовой окружности
Пять базовых точек, через каждые 72°

Пример 6. Изобразите на числовой окружности дуги, соответствующие числовым промежуткам.

💥 Видео

Алгебра 10 класс. 22 сентября. Числовая окружность #8 координаты точек 2Скачать

Алгебра 10 класс. 22 сентября. Числовая окружность #8 координаты точек 2

Алгебра 10 класс. 15 сентября. Числовая окружность #1Скачать

Алгебра 10 класс. 15 сентября. Числовая окружность #1

Определение значений по точкам на числовой окружностиСкачать

Определение значений по точкам на числовой окружности

Урок 1.3 Как расставлять точки на числовой окружности?Скачать

Урок 1.3  Как расставлять точки на числовой окружности?

Длина дуги числовой окружности | Алгебра 10 класс #9 | ИнфоурокСкачать

Длина дуги числовой окружности | Алгебра 10 класс #9 | Инфоурок

Как найти координаты точек на тригонометрической окружностиСкачать

Как найти координаты точек на тригонометрической окружности

10 класс, 12 урок, Числовая окружность на координатной плоскостиСкачать

10 класс, 12 урок, Числовая окружность на координатной плоскости

18+ Математика без Ху!ни. Формулы ПриведенияСкачать

18+ Математика без Ху!ни. Формулы Приведения

Математика это не ИсламСкачать

Математика это не Ислам

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэ

Промежутки на числовой окружностиСкачать

Промежутки на числовой окружности

1. Числовая окружность. 10 классСкачать

1. Числовая окружность. 10 класс
Поделиться или сохранить к себе: