- We are checking your browser. mathvox.ru
- Why do I have to complete a CAPTCHA?
- What can I do to prevent this in the future?
- Окружность, вписанная в треугольник. Теоремы и их рассмотрение
- Окружность, вписанная в равнобедренный треугольник
- Окружность, вписанная в прямоугольный треугольник
- Формулировка теоремы о вписанной окружности
- Теорема о центре окружности, вписанной в треугольник
- Узнать ещё
- Вписанная в треугольник окружность делит сторону на отрезки
- 🎬 Видео
Видео:ЕГЭ Математика Задание 6#27935Скачать
We are checking your browser. mathvox.ru
Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать
Why do I have to complete a CAPTCHA?
Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.
Видео:№691. Точка касания окружности, вписанной в равнобедренный треугольник, делит однуСкачать
What can I do to prevent this in the future?
If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.
If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.
Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.
Cloudflare Ray ID: 6d476dcbb85c2de4 • Your IP : 85.95.179.65 • Performance & security by Cloudflare
Видео:Геометрия В прямоугольную трапецию вписана окружность. Точка касания делит большую боковую сторонуСкачать
Окружность, вписанная в треугольник. Теоремы и их рассмотрение
Еще в Древнем Египте появилась наука, с помощью которой можно было измерять объемы, площади и другие величины. Толчком к этому послужило строительство пирамид. Оно предполагало значительное число сложных расчетов. И кроме строительства, было важно правильно измерить землю. Отсюда и появилась наука «геометрия» от греческих слов «геос» — земля и «метрио» — измеряю.
Исследованию геометрических форм способствовало наблюдение астрономических явлений. И уже в 17-м веке до н. э. были найдены начальные способы расчета площади круга, объема шара и главнейшее открытие — теорема Пифагора.
Вам будет интересно: Казахская академия спорта и туризма. Факультеты, структура вуза
Формулировка теоремы об окружности, вписанной в треугольник выглядит следующим способом:
В треугольник можно вписать только одну окружность.
При таком расположении окружность — вписанная, а треугольник — описанный около окружности.
Формулировка теоремы о центре окружности, вписанной в треугольник, выглядит следующим образом:
Центральная точка окружности, вписанной в треугольник, есть точка пересечения биссектрис этого треугольника.
Видео:Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторонСкачать
Окружность, вписанная в равнобедренный треугольник
Окружность считается вписанной в треугольник, если она хотя бы одной точкой касается всех его сторон.
На фото ниже показана окружность, находящаяся внутри равнобедренного треугольника. Условие теоремы об окружности, вписанной в треугольник, соблюдено — она касается всех сторон треугольника AB, ВС И СА в точках R, S, Q соответственно.
Одним из свойств равнобедренного треугольника является то, что вписанная окружность точкой касания делит основание пополам (BS = SC), а радиус вписанной окружности составляет треть высоты данного треугольника(SP=AS/3).
Свойства теоремы об окружности, вписанной в треугольник:
- Отрезки, выходящие из одной вершины треугольника к точкам касания с окружностью, равны. На рисунке AR = AQ, BR = BS, CS = CQ.
- Радиус окружности (вписанной) — это площадь, деленная на полупериметр треугольника. Как пример, нужно начертить равнобедренный треугольник с теми же буквенными обозначениями, что на картинке, следующих размеров: основание ВС = 3 см, высота AS = 2 см, стороны АВ=ВС, соответственно, получаются по 2,5 см каждая. Проведем из каждого угла биссектрису и место их пересечения обозначим как Р. Впишем окружность с радиусом PS, длину которого нужно найти. Узнать площадь треугольника можно, умножив 1/2 основания на высоту: S = 1/2 * DC * AS = 1/2 * 3 * 2 = 3 см2. Полупериметр треугольника равен 1/2 суммы всех сторон: Р = (АВ + ВС + СА) / 2 = (2,5 + 3 + 2,5) / 2 = 4 см; PS = S/P = 3/4 = 0,75 см2, что полностью соответствует действительности, если измерить линейкой. Соответственно, верно свойство теоремы об окружности, вписанной в треугольник.
Видео:Геометрия Точка касания окружности, вписанной в прямоугольную трапецию, делит ее меньшее основаниеСкачать
Окружность, вписанная в прямоугольный треугольник
Для треугольника с прямым углом действуют свойства теоремы об вписанной окружности в треугольник. И, кроме того, добавляется возможность решать задачи с постулатами теоремы Пифагора.
Радиус вписанной окружности в прямоугольный треугольник можно определить следующим образом: сложить длины катетов, вычесть значение гипотенузы и получившееся значение разделить на 2.
Есть хорошая формула, которая поможет высчитать площадь треугольника — периметр умножить на радиус вписанной в этот треугольник окружности.
Видео:Геометрия Точка касания вписанной окружности делит гипотенузу прямоугольного треугольника на отрезкиСкачать
Формулировка теоремы о вписанной окружности
В планиметрии важны теоремы о вписанных и описанных фигурах. Одна из них звучит так:
Центр окружности, вписанной в треугольник, является точкой пересечения биссектрис, проведенных из его углов.
На представленном рисунке показано доказательство данной теоремы. Показано равенство углов, и, соответственно, равенство прилегающих треугольников.
Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать
Теорема о центре окружности, вписанной в треугольник
Радиусы окружности, вписанной в треугольник, проведенные в точки касания перпендикулярны сторонам треугольника.
Задание «сформулируйте теорему об окружности вписанной в треугольник» не должно застать врасплох, потому что это одни из фундаментальных и простейших знаний в геометрии, которыми необходимо владеть в полной мере для решения многих практических задач в реальной жизни.
Видео:Г: В прямоугольном треугольнике точка касания вписанной окружности делит гипотенузу на отрезки 5 12Скачать
Узнать ещё
Знание — сила. Познавательная информация
Видео:Геометрия В равнобедренный треугольник вписана окружность Точка касания делит боковую сторонуСкачать
Вписанная в треугольник окружность делит сторону на отрезки
Если в задаче вписанная в треугольник окружность делит его сторону на отрезки, один из возможных вариантов решения — использование свойства отрезков касательных к окружности, проведенных из одной точки.
Рассмотрим две задачи на вписанную в треугольник окружность, решение которых опирается на это свойство касательных.
Одна из сторон треугольника равна 30 см, а другая делится точкой касания вписанной окружности на отрезки длиной 12 см и 14 см, считая от конца неизвестной стороны. Найти радиус вписанной окружности.
Дано: ∆ ABC,
окружность (O, r) — вписанная,
K, M, F — точки касания со сторонами AB, BC, AC,
AB=30 см, CM=12 см, BM=14 см.
1) По свойству касательных, отрезки касательных, проведенных из одной точки, равны:
CF=CM=12 см, BK=BM=14 см, AF=AK=AB-BK=30-14=16 см.
AC=AF+CF=16+12=28 см, BC=BM+CM=14+12=26 см.
2) По формуле Герона,
где a, b, c — стороны треугольника, p — полупериметр,
3) Радиус вписанной окружности найдем по формуле
В треугольнике, периметр которого равен 60 см, одна из сторон делится точкой касания вписанной в него окружности на отрезки 24 см и 5 см. Найти площадь треугольника.
Дано: ∆ ABC,
окружность (O, r) — вписанная,
K, M, F — точки касания со сторонами AB, BC, AC,
1) По свойству касательных, проведенных из одной точки, AF=AK=24 см, BM=BK=5 см, CF=CM= x см.
Следовательно, CM=CF=1 см, AB=AK+BK=29 см, BC=BM+CM=6 см, AC=AF+CF=25 см.
2) Полупериметр равен половине периметра: p=60:2=30 см.
🎬 Видео
Геометрия Точка K делит хорду AC окружности пополам, а хорду DE – на отрезки длиной 2 см и 32 смСкачать
Вписанная окружность делит чевиану пополам. ЗАДАЧА - БЛЕСК!Скачать
Задание 16 ЕГЭ по математике #6Скачать
Математика за минуту: Объяснение формулы радиуса вписанной окружности в прямоугольный треугольник.Скачать
Всё про углы в окружности. Геометрия | МатематикаСкачать
Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать
Геометрия Периметр треугольника ABC равен 30 см. Точка касания вписанной окружности со стороной ABСкачать
Вписанная окружность. ЗАДАЧА ИЗ ГОНКОНГА!Скачать
Волшебная формула для вписанной окружностиСкачать
Вписанные и описанные окружности. Вебинар | МатематикаСкачать