Теорема о двух секущих окружности

Отрезки и прямые, связанные с окружностью. Теорема о бабочке
Теорема о двух секущих окружностиОтрезки и прямые, связанные с окружностью
Теорема о двух секущих окружностиСвойства хорд и дуг окружности
Теорема о двух секущих окружностиТеоремы о длинах хорд, касательных и секущих
Теорема о двух секущих окружностиДоказательства теорем о длинах хорд, касательных и секущих
Теорема о двух секущих окружностиТеорема о бабочке

Теорема о двух секущих окружности

Видео:Теорема об отрезках хорд и секущихСкачать

Теорема об отрезках хорд и секущих

Отрезки и прямые, связанные с окружностью

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Конечная часть плоскости, ограниченная окружностью

Отрезок, соединяющий центр окружности с любой точкой окружности

Отрезок, соединяющий две любые точки окружности

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

Прямая, пересекающая окружность в двух точках

ФигураРисунокОпределение и свойства
ОкружностьТеорема о двух секущих окружности
КругТеорема о двух секущих окружности
РадиусТеорема о двух секущих окружности
ХордаТеорема о двух секущих окружности
ДиаметрТеорема о двух секущих окружности
КасательнаяТеорема о двух секущих окружности
СекущаяТеорема о двух секущих окружности
Окружность
Теорема о двух секущих окружности

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

КругТеорема о двух секущих окружности

Конечная часть плоскости, ограниченная окружностью

РадиусТеорема о двух секущих окружности

Отрезок, соединяющий центр окружности с любой точкой окружности

ХордаТеорема о двух секущих окружности

Отрезок, соединяющий две любые точки окружности

ДиаметрТеорема о двух секущих окружности

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

КасательнаяТеорема о двух секущих окружности

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

СекущаяТеорема о двух секущих окружности

Прямая, пересекающая окружность в двух точках

Видео:Теорема о секущей и касательной, о секущих, о пересекающихся хордах | Теоремы об окружностях - 1Скачать

Теорема о секущей и касательной, о секущих, о пересекающихся хордах | Теоремы об окружностях - 1

Свойства хорд и дуг окружности

ФигураРисунокСвойство
Диаметр, перпендикулярный к хордеТеорема о двух секущих окружностиДиаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.
Диаметр, проходящий через середину хордыДиаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.
Равные хордыТеорема о двух секущих окружностиЕсли хорды равны, то они находятся на одном и том же расстоянии от центра окружности.
Хорды, равноудалённые от центра окружностиЕсли хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.
Две хорды разной длиныТеорема о двух секущих окружностиБольшая из двух хорд расположена ближе к центру окружности.
Равные дугиТеорема о двух секущих окружностиУ равных дуг равны и хорды.
Параллельные хордыТеорема о двух секущих окружностиДуги, заключённые между параллельными хордами, равны.
Диаметр, перпендикулярный к хорде
Теорема о двух секущих окружности

Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.

Диаметр, проходящий через середину хордыТеорема о двух секущих окружности

Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.

Равные хордыТеорема о двух секущих окружности

Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности.

Хорды, равноудалённые от центра окружностиТеорема о двух секущих окружности

Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.

Две хорды разной длиныТеорема о двух секущих окружности

Большая из двух хорд расположена ближе к центру окружности.

Равные дугиТеорема о двух секущих окружности

У равных дуг равны и хорды.

Параллельные хордыТеорема о двух секущих окружности

Дуги, заключённые между параллельными хордами, равны.

Видео:Теорема о двух секущих. 9 класс.Скачать

Теорема о двух секущих. 9 класс.

Теоремы о длинах хорд, касательных и секущих

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Теорема о двух секущих окружности

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Теорема о двух секущих окружности

Теорема о двух секущих окружности

ФигураРисунокТеорема
Пересекающиеся хордыТеорема о двух секущих окружности
Касательные, проведённые к окружности из одной точкиТеорема о двух секущих окружности
Касательная и секущая, проведённые к окружности из одной точкиТеорема о двух секущих окружности
Секущие, проведённые из одной точки вне кругаТеорема о двух секущих окружности

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Теорема о двух секущих окружности

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Теорема о двух секущих окружности

Теорема о двух секущих окружности

Пересекающиеся хорды
Теорема о двух секущих окружности
Касательные, проведённые к окружности из одной точки
Теорема о двух секущих окружности
Касательная и секущая, проведённые к окружности из одной точки
Теорема о двух секущих окружности
Секущие, проведённые из одной точки вне круга
Теорема о двух секущих окружности
Пересекающиеся хорды
Теорема о двух секущих окружности

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Теорема о двух секущих окружности

Касательные, проведённые к окружности из одной точки

Теорема о двух секущих окружности

Теорема о двух секущих окружности

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Касательная и секущая, проведённые к окружности из одной точки

Теорема о двух секущих окружности

Теорема о двух секущих окружности

Теорема о двух секущих окружности

Секущие, проведённые из одной точки вне круга

Теорема о двух секущих окружности

Теорема о двух секущих окружности

Теорема о двух секущих окружности

Видео:9 класс. Геометрия. Теорема о пропорциональности отрезков хорд и в секущих окружности. 22.05.2020.Скачать

9 класс. Геометрия. Теорема о пропорциональности отрезков хорд и в секущих окружности. 22.05.2020.

Доказательства теорем о длинах хорд, касательных и секущих

Теорема 1 . Предположим, что хорды окружности AB и CD пересекаются в точке E (рис.1).

Теорема о двух секущих окружности

Теорема о двух секущих окружности

Тогда справедливо равенство

Теорема о двух секущих окружности

Доказательство . Заметим, что углы BCD и BAD равны как вписанные углы, опирающиеся на одну и ту же дугу. Углы BEC и AED равны как вертикальные. Поэтому треугольники BEC и AED подобны. Следовательно, справедливо равенство

Теорема о двух секущих окружности

откуда и вытекает требуемое утверждение.

Теорема 2 . Предположим, что из точки A , лежащей вне круга, к окружности проведены касательная AB и секущая AD (рис.2).

Теорема о двух секущих окружности

Теорема о двух секущих окружности

Точка B – точка касания с окружностью, точка C – вторая точка пересечения прямой AD с окружностью. Тогда справедливо равенство

Теорема о двух секущих окружности

Доказательство . Заметим, что угол ABC образован касательной AB и хордой BC , проходящей через точку касания B . Поэтому величина угла ABC равна половине угловой величины дуги BC . Поскольку угол BDC является вписанным углом, то величина угла BDC также равна половине угловой величины дуги BC . Следовательно, треугольники ABC и ABD подобны (угол A является общим, углы ABC и BDA равны). Поэтому справедливо равенство

Теорема о двух секущих окружности

откуда и вытекает требуемое утверждение.

Теорема 3 . Предположим, что из точки A , лежащей вне круга, к окружности проведены секущие AD и AF (рис.3).

Теорема о двух секущих окружности

Теорема о двух секущих окружности

Точки C и E – вторые точки пересечения секущих с окружностью. Тогда справедливо равенство

Теорема о двух секущих окружности

Доказательство . Проведём из точки A касательную AB к окружности (рис. 4).

Теорема о двух секущих окружности

Теорема о двух секущих окружности

Точка B – точка касания. В силу теоремы 2 справедливы равенства

Теорема о двух секущих окружности

откуда и вытекает требуемое утверждение.

Видео:ОГЭ по математике. 2 часть. Задача 24. Геометрия. Теорема о двух секущихСкачать

ОГЭ по математике. 2 часть. Задача 24. Геометрия. Теорема о двух секущих

Теорема о бабочке

Теорема о бабочке . Через середину G хорды EF некоторой окружности проведены две произвольные хорды AB и CD этой окружности. Точки K и L – точки пересечения хорд AC и BD с хордой EF соответственно (рис.5). Тогда отрезки GK и GL равны.

Теорема о двух секущих окружности

Теорема о двух секущих окружности

Доказательство . Существует много доказательств этой теоремы. Изложим доказательство, основанное на теореме синусов, которое, на наш взгляд, является наиболее наглядным. Для этого заметим сначала, что вписанные углы A и D равны, поскольку опираются на одну и ту же дугу. По той же причине равны и вписанные углы C и B . Теперь введём следующие обозначения:

Теорема о двух секущих окружности

Теорема о двух секущих окружности

Воспользовавшись теоремой синусов, применённой к треугольнику CKG , получим

Теорема о двух секущих окружности

Теорема о двух секущих окружности

Воспользовавшись теоремой синусов, применённой к треугольнику AKG , получим

Теорема о двух секущих окружности

Теорема о двух секущих окружности

Воспользовавшись теоремой 1, получим

Теорема о двух секущих окружности

Теорема о двух секущих окружности

Воспользовавшись равенствами (1) и (2), получим

Теорема о двух секущих окружности

Теорема о двух секущих окружности

Теорема о двух секущих окружности

Теорема о двух секущих окружности

Теорема о двух секущих окружности

Проводя совершенно аналогичные рассуждения для треугольников BGL и DGL , получим равенство

Теорема о двух секущих окружности

откуда вытекает равенство

что и завершает доказательство теоремы о бабочке.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Теорема о двух секущих окружности

  • Теорема о двух секущих окружности

Теорема о двух секущих окружности

§3. Свойства касательных, хорд, секущих. Вписанные и описанные четырёхугольники

Теорема о двух секущих окружности
Рис. 17

Если из точки к окружности проведены две касательные, то длины отрезков от этой точки до точек касания равны и прямая, проходящая через центр окружности и эту точку, делит угол между касательными пополам (рис. 17).

Используя это свойство, легко решить следующую задачу.

На основании $$ AC$$ равнобедренного треугольника $$ ABC$$ расположена точка $$ D$$ так, что $$ AD=a,CD=b$$. Окружности, вписанные в треугольники $$ ABD$$ и $$ DBC$$, касаются прямой $$ BD$$ в точках $$ M$$ и $$ N$$ соответственно. Найти отрезок $$ MN$$.

Теорема о двух секущих окружностиТеорема о двух секущих окружности
Рис. 18Рис. 18a

$$ DE=y$$, $$ QD=x+y$$, $$ AQ=AP=a-(x+y)$$, $$ EC=CF=b-y$$, $$ PB=BM=z, BF=BN=z+x$$ (рис. 18а). Выразим боковые стороны:

$$ AB=z+a-x-y$$, $$ BC=z+x+b-y$$. По условию $$ AB=BC$$; получим

Четырёхугольник называется описанным около окружности, если окружность касается всех его сторон.

В выпуклый четырёхугольник можно вписать окружность тогда и только тогда, когда суммы длин противолежащих сторон равны.

Теорема о двух секущих окружности
Рис. 19

Пусть четырёхугольник $$ ABCD$$ описан около окружности (рис. 19).

По свойству касательных: $$ AM=AN$$, $$ NB=BP$$, $$ PC=CQ$$ и $$ QD=DM$$, поэтому

$$ AM+MD+BP+PC=AN+NB+CQ+QD$$, что означает

Докажем обратное утверждение. Пусть в выпуклом четырёхугольнике $$ ABCD$$ стороны удовлетворяют условию $$ AB+CD=BC+AD.$$ Положим $$ AD=a, AB=b, BC=c, CD=d.$$

По условию $$ a+c=b+d,$$ что равносильно $$ c-b=d-a.$$

Пусть $$ d>a.$$ Отложим на большей стороне $$ CD$$ меньшую сторону `DM=a` (рис. 20). Так как в этом случае $$ c>b$$, то также отложим $$ BN=b$$, получим три равнобедренных треугольника `ABN`, `ADM` и `MCN`.

Теорема о двух секущих окружности
Рис. 20

В равнобедренном треугольнике биссектриса угла при вершине является медианой и высотой, отсюда следует, что если провести биссектрисы углов `B`, `C` и `D`, то они разделят пополам соответственно отрезки `AN`, `MN` и `AM` и будут им перпендикулярны. Это означает, что биссектрисы будут серединными перпендикулярами трёх сторон треугольника $$ ANM$$, а они по теореме пересекаются в одной точке. Обозначим эту точку $$ O$$. Эта точка одинаково удалена от отрезков `AB` и `BC` (лежит на $$ OB$$), `BC` и `CD` (лежит на $$ OC$$) и `CD` и `AD` (лежит на $$ OD$$), следовательно, точка $$ O$$ одинакова удалена от всех четырёх сторон четырёхугольника $$ ABCD$$ и является центром вписанной окружности. Случай $$ d=a$$, как более простой, рассмотрите самостоятельно.

Равнобокая трапеция описана около окружности. Найти радиус окружности, если длины оснований равны $$ a$$ и $$ b$$.

Теорема о двух секущих окружности
Рис. 21

Пусть в равнобокой трапеции $$ ABCD$$ `BC=b`, `AD=a` (рис. 21). Эта трапеция равнобокая $$ (AB=CD)$$, она описана около окружности, следовательно, $$ AB+CD=AD+BC$$ Отсюда получаем:

Проведём $$ BM$$ и $$ CN$$ перпендикулярно $$ AD$$. Трапеция равнобокая, углы при основании равны, следовательно, равны и треугольники $$ ABM$$ и $$ DCN$$ и $$ AM=ND$$. По построению $$ MBCN$$ — прямоугольник, $$ MN=BC=b$$ поэтому $$ AM=<displaystyle frac>(AD-BC)-<displaystyle frac>(a-b)$$. Из прямоугольного треугольника $$ ABM$$ находим высоту трапеции $$ ABCD$$:

Очевидно, что высота трапеции равна диаметру окружности, поэтому

радиус вписанной окружности равен $$ overline<)r=<displaystyle frac>sqrt>$$.

Очень полезная задача. Заметим, что из решения также следует, что в равнобокой описанной трапеции $$ overline<)mathrmalpha =<displaystyle frac>>$$.

Градусная мера угла, образованного хордой и касательной, имеющими общую точку на окружности, равна половине градусной меры дуги, заключённой между его сторонами (рис. 22).

Теорема о двух секущих окружности
Рис. 22

Рассматриваем угол $$ NAB$$ между касательной $$ NA$$ и хордой $$ AB$$. Если $$ O$$ — центр окружности, то $$ OAperp AN$$, `/_OAB=/_OBA=90^@alpha`. Сумма углов треугольника равна `180^@`, следовательно, $$ angle AOB=2alpha $$. Итак, $$ alpha =angle NAB=<displaystyle frac>angle AOB.$$

Обратим внимание, что угол $$ NAB$$ равен любому вписанному углу $$ AKB$$, опирающемуся на ту же дугу $$ AB$$.

Случай `/_alpha>=90^@` рассматривается аналогично.

Из этого свойства следует важная теорема «о касательной и секущей», которая часто используется при решении задач.

Пусть к окружности проведены из одной точки касательная $$ MA$$ и секущая $$ MB$$, пересекающая окружность в точке $$ C$$ (рис. 23). Тогда справедливо равенство

т. е. если из точки `M` к окружности проведены касательная и секущая, то квадрат отрезка касательной от точки `M` до точки касания равен произведению длин отрезков секущей от точки `M` до точек её пересечения с окружностью.

Угол $$ MAC$$ образован хордой и касательной, $$ angle MAC=angle ABC$$. Так как в треугольниках $$ MAC$$ и $$ MBA$$ угол $$ M$$ общий, то по двум углам они подобны. Из подобия следует:

Теорема о двух секущих окружности
Рис. 23

Если из точки $$ M$$ к окружности проведены две секущие: $$ MB$$, пересекающая окружность в точке $$ C$$ и $$ MK$$, пересекающая окружность в точке $$ L$$ (рис. 23), то справедливо равенство $$ MB·MC=MK·ML$$.

Теорема о двух секущих окружности
Рис. 24

Окружность проходит через вершины $$ C u D$$ трапеции $$ ABCD,$$ касается боковой стороны $$ AB$$ в точке $$ B$$ и пересекает большее основание $$ AD$$ в точке $$ K$$ (рис. 24). Известно, что $$ AB=5sqrt$$, $$ BC=5$$ и $$ KD=10$$.

Найти радиус окружности.

1. Пусть $$ AK=x$$ тогда $$ AD=10+x$$ю

По теореме о касательной и секущей:

$$ A^=AK·KD$$ т. е. $$ 75=x(x+10)$$, откуда $$ x=5$$. Итак $$ AD=15$$.

2. Заметим теперь, что угол $$ ABD$$ между касательной $$ AB$$ и хордой $$ BD$$ равен вписанному углу $$ BCD$$, а из параллельности прямых $$ AD$$ и $$ BC$$ следует равенство углов `1` и `2`. По первому признаку подобия $$ △ABDsim △DCB$$. Из подобия имеем $$ <displaystyle frac>=<displaystyle frac><displaystyle frac>$$. Из последнего равенства находим, что $$ B^=AD·BC$$, т. е. $$ BD=sqrt=5sqrt$$, а из первого равенства находим $$ CD=<displaystyle frac>=5$$.

3. Так как $$ KB=CD$$ ($$ KBCD$$ — вписанная трапеция, она равнобокая), и $$ K^+B^=K^,$$ то `/_ KBD=90^@` и $$ KD$$ — диаметр окружности.

Значит, её радиус равен `5`.

Около четырёхугольника можно описать окружность тогда и только тогда, когда сумма противолежащих углов равна `180^@`.

Из этой теоремы следует:

a) из всех параллелограммов только около прямоугольника можно описать окружность;

б) около трапеции можно описать окружность только тогда, когда она равнобокая.

Теорема о двух секущих окружности
Рис. 25

В треугольнике $$ ABC$$ биссектрисы $$ AD$$ и $$ BF$$ пересекаются в точке $$ O$$ (рис. 25). Известно, что точки $$ F, O, D$$, и `C` лежат на одной окружности и что $$ DF=sqrt.$$ Найти площадь треугольника $$ ODF$$.

Четырёхугольник $$ DOFC$$ вписан в окружность, по теореме 9:

$$ angle DOF=pi -angle C$$, т. е. $$ pi -<displaystyle frac>(angle A+angle B)=pi -angle C$$, откуда, учитывая, что $$ angle A+angle B+angle C=pi $$, находим $$ angle С=<displaystyle frac>$$.

Теперь заметим, что $$ O$$ — точка точка пересечения биссектрис, $$ CO$$ — биссектриса угла $$ C,$$ следовательно, углы $$ OCD$$ и $$ OCF$$ равны друг другу. Это вписанные углы, поэтому вписанные углы $$ ODF$$ и $$ OFD$$ равны им и равны друг другу. Таким образом,

Треугольник $$ DOF$$ равнобедренный с основанием $$ DF=sqrt$$ и углом при основании `30^@`. Находим его высоту, опущенную из вершины $$ O$$ и площадь треугольника $$ ODF: S=<displaystyle frac>h·DF=<displaystyle frac<sqrt>>$$.

Свойство секущих

Теорема

Для каждой из секущих, проведённых из одной точки, произведение длины секущей на длину её внешней части есть величина постоянная.

Теорема о двух секущих окружностиДано : окружность (O; R), AB и AC — секущие,

AB∩окр. (O; R)=F, AC∩окр. (O; R)=K

Теорема о двух секущих окружностиРассмотрим треугольники ABK и ACF.

∠ABK=∠ACF (как вписанные углы, опирающиеся на одну дугу FK).

Следовательно, треугольники ABK и ACF подобны (по двум углам).

Из подобия треугольников следует пропорциональность соответствующих сторон:

Теорема о двух секущих окружности

По основному свойству пропорции:

Теорема о двух секущих окружности

Что и требовалось доказать.

Теорема о двух секущих окружностиII способ

1) Проведём отрезки FK и BC.

2) Так как четырёхугольник BFKC — вписанный в окружность, то сумма его противолежащих углов равна 180º:

∠BCK+∠BFK=180º. Следовательно, ∠BFK=180º-∠BCK.

3) ∠AFK+∠BFK=180º (как смежные). Отсюда,

Теорема о двух секущих окружности4) Рассмотрим треугольники ABC и AKF.

У них ∠ACB=∠AFK (так как ∠AFK=∠BCK по доказанному), ∠A — общий угол. Следовательно, треугольники ABC и AKF — подобны (по двум углам).

Теорема о двух секущих окружности

Что и требовалось доказать .

При решении задач будем использовать свойство секущих, а также запомним полученные в ходе доказательства теоремы факты о подобии треугольников, образованных секущими. Причем подобие треугольников ABC и AKF можно доказывать как приведённым выше способом, так и опираясь на свойство секущих.

🔥 Видео

Теорема о касательной и секущейСкачать

Теорема о касательной и секущей

Секущая и касательная. 9 класс.Скачать

Секущая и касательная. 9 класс.

Теорема о произведении отрезков пересекающихся хорд.Скачать

Теорема о произведении отрезков пересекающихся хорд.

Секретная теорема из учебника геометрииСкачать

Секретная теорема из учебника геометрии

Секущие в окружности и их свойство. Геометрия 8-9 классСкачать

Секущие в окружности и их свойство. Геометрия 8-9 класс

Касательная и секущая к окружности.Скачать

Касательная и секущая к окружности.

Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать

Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)

теорема о произведении отрезков секущихСкачать

теорема о произведении отрезков секущих

Две теоремы об отрезках, связанных с окружностьюСкачать

Две теоремы об отрезках, связанных с окружностью

Теорема о секущихСкачать

Теорема о секущих

11 класс, 41 урок, Две теоремы об отрезках, связанных с окружностьюСкачать

11 класс, 41 урок, Две теоремы об отрезках, связанных с окружностью

Теоремы об отрезках, связанных с окружностью. Урок 22. Геометрия 11 классСкачать

Теоремы об отрезках, связанных с окружностью. Урок 22. Геометрия 11 класс

Теорема о числе точек пересечения двух окружностейСкачать

Теорема о числе точек пересечения двух окружностей
Поделиться или сохранить к себе: