Теорема о двух касательных проведенных к двум окружностям

Теорема о длине внешней общей касательной к окружностям

Данное утверждение может быть очень полезно при решении задач на внешне касающиеся окружности.

Теорема Если две окружности касаются внешним образом, то длина отрезка общей внешней касательной равна удвоенному среднему пропорциональному их радиусов.

Теорема о двух касательных проведенных к двум окружностям

Доказательство смотрите на Youtube канале

Теорема о двух касательных проведенных к двум окружностям

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Две окружности на плоскости.
Общие касательные к двум окружностям

Теорема о двух касательных проведенных к двум окружностямВзаимное расположение двух окружностей
Теорема о двух касательных проведенных к двум окружностямОбщие касательные к двум окружностям
Теорема о двух касательных проведенных к двум окружностямФормулы для длин общих касательных и общей хорды
Теорема о двух касательных проведенных к двум окружностямДоказательства формул для длин общих касательных и общей хорды

Теорема о двух касательных проведенных к двум окружностям

Видео:Теорема о двух секущих. 9 класс.Скачать

Теорема о двух секущих. 9 класс.

Взаимное расположение двух окружностей

Взаимное расположение на плоскости двух окружностей радиусов r1 и r2 с центрами O1 и O2 определяется расстоянием d между центрами этих окружностей

Расстояние между центрами окружностей больше суммы их радиусов

Расстояние между центрами окружностей равно сумме их радиусов

Расстояние между центрами окружностей равно разности их радиусов

Расстояние между центрами окружностей больше разности их радиусов, но меньше суммы их радиусов

r1 – r2 лежит внутри другой

Расстояние между центрами окружностей меньше разности их радиусов

d r1 и r2 с центрами O1 и O2 определяется расстоянием d между центрами этих окружностей

Расстояние между центрами окружностей больше суммы их радиусов

Расстояние между центрами окружностей равно сумме их радиусов

Расстояние между центрами окружностей равно разности их радиусов

Расстояние между центрами окружностей больше разности их радиусов, но меньше суммы их радиусов

r1 – r2 лежит внутри другой

Расстояние между центрами окружностей меньше разности их радиусов

d r1 и r2 с центрами O1 и O2 определяется расстоянием d между центрами этих окружностей

Теорема о двух касательных проведенных к двум окружностям

Теорема о двух касательных проведенных к двум окружностям

Расстояние между центрами окружностей равно разности их радиусов

Теорема о двух касательных проведенных к двум окружностям

Теорема о двух касательных проведенных к двум окружностям

Расстояние между центрами окружностей меньше разности их радиусов

d внешней касательной к двум окружностям, если она касается каждой из окружностей, а окружности лежат по одну сторону от этой прямой.

Прямую называют внутренней касательной к двум окружностям, если она касается каждой из окружностей, а окружности лежат по разные стороны от этой прямой.

Существует единственная общая внешняя касательная. Других общих касательных нет.

Существуют две общих внешних касательных. Других общих касательных нет.

Существует единственная общая внутренняя касательная, а также
две общих внешних касательных. Других общих касательных нет.

Каждая из окружностей лежит вне другой

Теорема о двух касательных проведенных к двум окружностям

Существуют две общих внешних касательных, а также две общих внутренних касательных. Других общих касательных нет

ФигураРисунокСвойства
Две окружности на плоскостиТеорема о двух касательных проведенных к двум окружностям
Каждая из окружностей лежит вне другойТеорема о двух касательных проведенных к двум окружностям
Внешнее касание двух окружностейТеорема о двух касательных проведенных к двум окружностям
Внутреннее касание двух окружностейТеорема о двух касательных проведенных к двум окружностям
Окружности пересекаются в двух точкахТеорема о двух касательных проведенных к двум окружностямТеорема о двух касательных проведенных к двум окружностям
Каждая из окружностей лежит вне другой
Теорема о двух касательных проведенных к двум окружностям
Внешнее касание двух окружностей
Теорема о двух касательных проведенных к двум окружностям
Внутреннее касание двух окружностей
Теорема о двух касательных проведенных к двум окружностям
Окружности пересекаются в двух точках
Теорема о двух касательных проведенных к двум окружностям
Теорема о двух касательных проведенных к двум окружностям
Каждая из окружностей лежит вне другой
Теорема о двух касательных проведенных к двум окружностям

Расстояние между центрами окружностей больше суммы их радиусов

Внешнее касание двух окружностей
Теорема о двух касательных проведенных к двум окружностям

Расстояние между центрами окружностей равно сумме их радиусов

Внутреннее касание двух окружностей
Окружности пересекаются в двух точках
Теорема о двух касательных проведенных к двум окружностям

Расстояние между центрами окружностей больше разности их радиусов, но меньше суммы их радиусов

r1 – r2 лежит внутри другой

Внутренняя касательная к двум окружностямТеорема о двух касательных проведенных к двум окружностям
Внутреннее касание двух окружностейТеорема о двух касательных проведенных к двум окружностям
Окружности пересекаются в двух точкахТеорема о двух касательных проведенных к двум окружностям
Внешнее касание двух окружностейТеорема о двух касательных проведенных к двум окружностям
Теорема о двух касательных проведенных к двум окружностям
Теорема о двух касательных проведенных к двум окружностям

Прямую называют внешней касательной к двум окружностям, если она касается каждой из окружностей, а окружности лежат по одну сторону от этой прямой.

Прямую называют внутренней касательной к двум окружностям, если она касается каждой из окружностей, а окружности лежат по разные стороны от этой прямой.

Существует единственная общая внешняя касательная. Других общих касательных нет.

Существуют две общих внешних касательных. Других общих касательных нет.

Существует единственная общая внутренняя касательная, а также две общих внешних касательных. Других общих касательных нет.

Теорема о двух касательных проведенных к двум окружностям

Существуют две общих внешних касательных, а также две общих внутренних касательных. Других общих касательных нет

Внешняя касательная к двум окружностям
Теорема о двух касательных проведенных к двум окружностям
Внутренняя касательная к двум окружностям
Теорема о двух касательных проведенных к двум окружностям
Внутреннее касание двух окружностей
Теорема о двух касательных проведенных к двум окружностям
Окружности пересекаются в двух точках
Теорема о двух касательных проведенных к двум окружностям
Внешнее касание двух окружностей
Теорема о двух касательных проведенных к двум окружностям
Теорема о двух касательных проведенных к двум окружностям
Каждая из окружностей лежит вне другой
Теорема о двух касательных проведенных к двум окружностям

Теорема о двух касательных проведенных к двум окружностям

Теорема о двух касательных проведенных к двум окружностям

Прямую называют внешней касательной к двум окружностям, если она касается каждой из окружностей, а окружности лежат по одну сторону от этой прямой.

Теорема о двух касательных проведенных к двум окружностям

Теорема о двух касательных проведенных к двум окружностям

Прямую называют внутренней касательной к двум окружностям, если она касается каждой из окружностей, а окружности лежат по разные стороны от этой прямой.

Теорема о двух касательных проведенных к двум окружностям

Теорема о двух касательных проведенных к двум окружностям

Существует единственная общая внешняя касательная. Других общих касательных нет.

Теорема о двух касательных проведенных к двум окружностям

Теорема о двух касательных проведенных к двум окружностям

Существуют две общих внешних касательных. Других общих касательных нет.

Теорема о двух касательных проведенных к двум окружностям

Теорема о двух касательных проведенных к двум окружностям

Теорема о двух касательных проведенных к двум окружностям

Теорема о двух касательных проведенных к двум окружностям

Существует единственная общая внутренняя касательная, а также две общих внешних касательных. Других общих касательных нет.

Теорема о двух касательных проведенных к двум окружностям

Теорема о двух касательных проведенных к двум окружностям

Существуют две общих внешних касательных, а также две общих внутренних касательных. Других общих касательных нет

Видео:8 класс, 32 урок, Касательная к окружностиСкачать

8 класс, 32 урок, Касательная к окружности

Формулы для длин общих касательных и общей хорды двух окружностей

Внешняя касательная к двум окружностям
Внутренняя касательная к двум окружностям
Внутреннее касание двух окружностей
Окружности пересекаются в двух точках
Внешнее касание двух окружностей
Каждая из окружностей лежит вне другой

Длина общей внешней касательной к двум окружностям вычисляется по формуле

Теорема о двух касательных проведенных к двум окружностям

Длина общей внутренней касательной к двум окружностям вычисляется по формуле

Теорема о двух касательных проведенных к двум окружностям

Длина общей хорды двух окружностей вычисляется по формуле

Теорема о двух касательных проведенных к двум окружностям

ФигураРисунокФормула
Внешняя касательная к двум окружностямТеорема о двух касательных проведенных к двум окружностям
Внутренняя касательная к двум окружностямТеорема о двух касательных проведенных к двум окружностям
Общая хорда двух пересекающихся окружностейТеорема о двух касательных проведенных к двум окружностям

Длина общей внешней касательной к двум окружностям вычисляется по формуле

Теорема о двух касательных проведенных к двум окружностям

Длина общей внутренней касательной к двум окружностям вычисляется по формуле

Теорема о двух касательных проведенных к двум окружностям

Длина общей хорды двух окружностей вычисляется по формуле

Теорема о двух касательных проведенных к двум окружностям

Внешняя касательная к двум окружностям
Теорема о двух касательных проведенных к двум окружностям
Внутренняя касательная к двум окружностям
Теорема о двух касательных проведенных к двум окружностям
Общая хорда двух пересекающихся окружностей
Теорема о двух касательных проведенных к двум окружностям

Теорема о двух касательных проведенных к двум окружностям

Теорема о двух касательных проведенных к двум окружностям

Длина общей внешней касательной к двум окружностям вычисляется по формуле

Теорема о двух касательных проведенных к двум окружностям

Теорема о двух касательных проведенных к двум окружностям

Теорема о двух касательных проведенных к двум окружностям

Длина общей внутренней касательной к двум окружностям вычисляется по формуле

Теорема о двух касательных проведенных к двум окружностям

Внешняя касательная к двум окружностям
Внутренняя касательная к двум окружностям
Общая хорда двух пересекающихся окружностей
Теорема о двух касательных проведенных к двум окружностям

Длина общей хорды двух окружностей вычисляется по формуле

Теорема о двух касательных проведенных к двум окружностям

Теорема о двух касательных проведенных к двум окружностям

Теорема о двух касательных проведенных к двум окружностям

Видео:Внешняя касательная к двум окружностямСкачать

Внешняя касательная к двум окружностям

Доказательства формул для длин общих касательных и общей хорды двух окружностей

Утверждение 1 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d (рис.1), то длина общей внешней касательной к этим окружностям вычисляется по формуле

Теорема о двух касательных проведенных к двум окружностям

Теорема о двух касательных проведенных к двум окружностям

Теорема о двух касательных проведенных к двум окружностям

Теорема о двух касательных проведенных к двум окружностям

Теорема о двух касательных проведенных к двум окружностям

Теорема о двух касательных проведенных к двум окружностям

что и требовалось доказать.

Утверждение 2 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d , то длина общей внутренней касательной к этим окружностям вычисляется по формуле

Теорема о двух касательных проведенных к двум окружностям

Теорема о двух касательных проведенных к двум окружностям

Теорема о двух касательных проведенных к двум окружностям

Теорема о двух касательных проведенных к двум окружностям

Теорема о двух касательных проведенных к двум окружностям

Теорема о двух касательных проведенных к двум окружностям

что и требовалось доказать.

Утверждение 3 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d , то длина общей хорды AB этих окружностей вычисляется по формуле

Теорема о двух касательных проведенных к двум окружностям

Теорема о двух касательных проведенных к двум окружностям

Теорема о двух касательных проведенных к двум окружностям

Доказательство . Для того, чтобы найти длину общей хорды AB двух окружностей, введём, как показано на рисунке 3,

Видео:Секретная теорема из учебника геометрииСкачать

Секретная теорема из учебника геометрии

Касательная к окружности

Теорема о двух касательных проведенных к двум окружностям

О чем эта статья:

Видео:Теорема об отрезках хорд и секущихСкачать

Теорема об отрезках хорд и секущих

Касательная к окружности, секущая и хорда — в чем разница

В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.

Теорема о двух касательных проведенных к двум окружностям

Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.

Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).

Теорема о двух касательных проведенных к двум окружностям

Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.

Видео:Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.Скачать

Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.

Свойства касательной к окружности

Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.

Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.

Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:

  • окружность с центральной точкой А;
  • прямая а — касательная к ней;
  • радиус АВ, проведенный к касательной.

Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. аАВ.

Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.

В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.

Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.

Теорема о двух касательных проведенных к двум окружностям

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Задача

У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.

Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.

Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.

∠АОС = 180° — ∠САО — ∠АСО = 180° — 90° — 28° = 62°

Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.

Теорема о двух касательных проведенных к двум окружностям

Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.

Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.

Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.

Теорема о двух касательных проведенных к двум окружностям

Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.

Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.

Задача 1

У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.

Решение

Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.

∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).

Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:

∠BDC = ∠BDA × 2 = 30° × 2 = 60°

Итак, угол между касательными составляет 60°.

Теорема о двух касательных проведенных к двум окружностям

Задача 2

К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.

Решение

Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.

Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.

∠МNК = (180° — ∠МКN) : 2 = (180° — 50°) : 2 = 65°

Теорема о двух касательных проведенных к двум окружностям

Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.

Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.

Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.

Теорема о двух касательных проведенных к двум окружностям

Задача 1

Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.

Решение

Исходя из соотношения касательной и секущей МА 2 = МВ × МС.

Найдем длину внешней части секущей:

МС = МВ — ВС = 16 — 12 = 4 (см)

МА 2 = МВ × МС = 16 х 4 = 64

Теорема о двух касательных проведенных к двум окружностям

Задача 2

Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.

Решение

Допустим, что МО = у, а радиус окружности обозначим как R.

В таком случае МВ = у + R, а МС = у – R.

Поскольку МВ = 2 МА, значит:

МА = МВ : 2 = (у + R) : 2

Согласно теореме о касательной и секущей, МА 2 = МВ × МС.

(у + R) 2 : 4 = (у + R) × (у — R)

Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:

Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).

Теорема о двух касательных проведенных к двум окружностям

Ответ: MO = 10 см.

Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.

Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда . Отметим на касательной прямой точку C, чтобы получился угол AВC.

Теорема о двух касательных проведенных к двум окружностям

Задача 1

Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.

Решение

Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.

АВ = ∠АВС × 2 = 32° × 2 = 64°

Теорема о двух касательных проведенных к двум окружностям

Задача 2

У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.

Решение

Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:

КМ = 2 ∠МКВ = 2 х 84° = 168°

Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.

∠ОКМ = ∠ОМК = (180° — ∠КОМ) : 2

Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:

∠ОМК = (180° — ∠КОМ) : 2 = (180° — 168°) : 2 = 6°

🌟 Видео

Касательные к окружностиСкачать

Касательные к окружности

Теорема о касательной и секущей, проведенных из одной точки. ДоказательствоСкачать

Теорема о касательной и секущей, проведенных из одной точки. Доказательство

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Вариант 77, № 7. Свойство касательной. Теорема о касательных, проведенных из одной точки. Задача 1Скачать

Вариант 77, № 7. Свойство касательной. Теорема о касательных, проведенных из одной точки. Задача 1

Отрезки касательных из одной точки до точек касания окружности равны | Окружность | ГеометрияСкачать

Отрезки касательных из одной точки до точек касания окружности равны | Окружность |  Геометрия

Геометрия 8 класс Урок 9 Касательные к окружностиСкачать

Геометрия 8 класс Урок 9 Касательные к окружности

50. Геометрия на ЕГЭ по математике. Теорема об отрезках касательных к окружности.Скачать

50.  Геометрия на ЕГЭ по математике. Теорема об отрезках касательных к окружности.

Урок по теме КАСАТЕЛЬНАЯ К ОКРУЖНОСТИСкачать

Урок по теме КАСАТЕЛЬНАЯ К ОКРУЖНОСТИ

Теорема о секущей и касательной, о секущих, о пересекающихся хордах | Теоремы об окружностях - 1Скачать

Теорема о секущей и касательной, о секущих, о пересекающихся хордах | Теоремы об окружностях - 1

Геометрия. 8 класс. Урок 02 Касательные к окружностиСкачать

Геометрия. 8 класс.  Урок 02 Касательные к окружности

Доказательство теоремы об отрезках касательных.Скачать

Доказательство теоремы об отрезках касательных.

Геометрия. 8 класс. Урок 9 "Касательные к окружности"Скачать

Геометрия. 8 класс. Урок 9 "Касательные к окружности"

Теорема о касательной и секущей, проведенных из одной точкиСкачать

Теорема о касательной и секущей, проведенных из одной точки
Поделиться или сохранить к себе: