Тангенс пи на 3 на окружности равен

Тангенс
Содержание
  1. Тангенс – одна из тригонометрических функций. Как и для всех других функций, значение тангенса определяется для конкретного угла или числа (в этом случае используют числовую окружность.
  2. Аргумент и значение тангенса
  3. Тангенс острого угла
  4. Тангенс можно определить с помощью прямоугольного треугольника — он равен отношению противолежащего катета к прилежащему.
  5. Вычисление тангенса числа или любого угла
  6. Для чисел, а также для тупых, развернутых углов и углов больших (360°) тангенс чаще всего определяют с помощью синуса и косинуса, через их отношение:
  7. Прямая проходящая через начало отсчета на числовой окружности и параллельная оси ординат (синусов) называется осью тангенсов. Направление оси тангенсов и оси синусов совпадает.
  8. Чтобы определить тангенс с помощью числовой окружности, нужно: 1) Отметить соответствующую аргументу тангенса точку на числовой окружности. 2) Провести прямую через эту точку и начало координат и продлить её до оси тангенсов. 3) Найти координату пересечения этой прямой и оси тангенсов.
  9. В отличие от синуса и косинуса значение тангенса не ограничено и лежит в пределах от (-∞) до (+∞), то есть может быть любым.
  10. Знаки по четвертям
  11. Связь с другими тригонометрическими функциями:
  12. Значения тангенса и котангенса на тригонометрическом круге
  13. Таблица ТАНГЕНСОВ для углов от 0° до 360° градусов
  14. 💡 Видео

Тангенс – одна из тригонометрических функций. Как и для всех других функций, значение тангенса определяется для конкретного угла или числа (в этом случае используют числовую окружность.

Видео:Алгебра 10 класс. 2 октября. Тангенс и котангенс на окружностиСкачать

Алгебра 10 класс. 2 октября. Тангенс и котангенс на окружности

Аргумент и значение тангенса

Тангенс пи на 3 на окружности равен

Аргументом тангенса может быть:
— как число или выражение с Пи: (1,3), (frac), (π), (-frac) и т.п.
— так и угол в градусах: (45^°), (360^°),(-800^°), (1^° ) и т.п.

Для обоих случаев тангенс вычисляется одинаковым способом – либо через значения синуса и косинуса, либо через тригонометрический круг (см. ниже).

Видео:Тригонометрическая окружность. Как выучить?Скачать

Тригонометрическая окружность. Как выучить?

Тангенс острого угла

Тангенс можно определить с помощью прямоугольного треугольника — он равен отношению противолежащего катета к прилежащему.

1) Пусть дан угол и нужно определить тагенс этого угла.

Тангенс пи на 3 на окружности равен

2) Достроим на этом угле любой прямоугольный треугольник.

Тангенс пи на 3 на окружности равен

3) Измерив, нужные стороны, можем вычислить тангенс.

Тангенс пи на 3 на окружности равен

Видео:Как видеть тангенс? Тангенс угла с помощью единичного круга.Скачать

Как видеть тангенс? Тангенс угла с помощью единичного круга.

Вычисление тангенса числа или любого угла

Для чисел, а также для тупых, развернутых углов и углов больших (360°) тангенс чаще всего определяют с помощью синуса и косинуса, через их отношение:

Пример. Вычислите (tg:0).
Решение: Чтобы найти тангенс нуля нужно найти сначала синус и косинус (0). И то, и другое найдем с помощью тригонометрического круга :

Тангенс пи на 3 на окружности равен

Точка (0) на числовой окружности совпадает с (1) на оси косинусов, значит (cos:0=1). Если из точки (0) на числовой окружности провести перпендикуляр к оси синусов, то мы попадем в точку (0), значит (sin:⁡0=0). Получается: (tg:0=) (frac) (=) (frac) (=0).

Пример. Вычислите (tg:(-765^circ)).
Решение: (tg: (-765^circ)=) (frac)
Что бы вычислить синус и косинус (-765^°). Отложим (-765^°) на тригонометрическом круге. Для этого надо повернуть в отрицательную сторону на (720^°) , а потом еще на (45^°).

Тангенс пи на 3 на окружности равен

Однако можно определять тангенс и напрямую через тригонометрический круг — для этого надо на нем построить дополнительную ось:

Прямая проходящая через начало отсчета на числовой окружности и параллельная оси ординат (синусов) называется осью тангенсов. Направление оси тангенсов и оси синусов совпадает.

Тангенс пи на 3 на окружности равен

Ось тангенсов – это фактически копия оси синусов, только сдвинутая. Поэтому все числа на ней расставляются так же как на оси синусов.

Чтобы определить тангенс с помощью числовой окружности, нужно:
1) Отметить соответствующую аргументу тангенса точку на числовой окружности.
2) Провести прямую через эту точку и начало координат и продлить её до оси тангенсов.
3) Найти координату пересечения этой прямой и оси тангенсов.

Тангенс пи на 3 на окружности равен

2) Проводим через данную точку и начало координат прямую.

Тангенс пи на 3 на окружности равен

3) В данном случае координату долго искать не придется – она равняется (1).

Пример. Вычислите (tg: 45°) и (tg: (-240°)).
Решение:
Для угла (45°) ((∠KOA)) тангенс будет равен (1), потому что именно в таком значении сторона угла, проходящая через начало координат и точку (A), пересекает ось тангесов. А для угла (-240°) ((∠KOB)) тангенс равен (-sqrt) (приблизительно (-1,73)).

Тангенс пи на 3 на окружности равен

Значения для других часто встречающихся в практике углов смотри в тригонометрической таблице.

В отличие от синуса и косинуса значение тангенса не ограничено и лежит в пределах от (-∞) до (+∞), то есть может быть любым.

Тангенс пи на 3 на окружности равен

При этом тангенс не определен для:
1) всех точек (A) (значение в Пи: …(-) (frac) ,(-) (frac) , (frac) , (frac) , (frac) …; и значение в градусах: …(-630°),(-270°),(90°),(450°),(810°)…)
2) всех точек (B) (значение в Пи: …(-) (frac) ,(-) (frac) ,(-) (frac) , (frac) , (frac) …; и значение в градусах: …(-810°),(-450°),(-90°),(270°)…) .

Так происходит потому, что прямая проходящая через начало координат и любую из этих точек никогда не пересечет ось тангенсов, т.к. будет идти параллельно ей. Поэтому в этих точках тангенс – НЕ СУЩЕСТВУЕТ (для всех остальных значений тангенс может быть найден).

Из-за этого при решении тригонометрических уравнений и неравенств с тангенсом необходимо учитывать ограничения на ОДЗ .

Видео:10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Знаки по четвертям

С помощью оси тангенсов легко определить знаки по четвертям тригонометрической окружности. Для этого надо взять любую точку на четверти и определить знак тангенса для нее описанным выше способом. У всей четверти знак будет такой же.

Для примера на рисунке нанесены две зеленые точки в I и III четвертях. Для них значение тангенса положительно (зеленые пунктирные прямые приходят в положительную часть оси), значит и для любой точки из I и III четверти значение тангенса будет положительно (знак плюс).
С двумя фиолетовыми точками в II и IV четвертях – аналогично, но с минусом.

Тангенс пи на 3 на окружности равен

Видео:Тригонометрическая окружность tg x и ctg xСкачать

Тригонометрическая окружность tg x и ctg x

Связь с другими тригонометрическими функциями:

котангенсом того же угла: формулой (ctg⁡:x=) (frac)
Другие наиболее часто применяемые формулы смотри здесь .

Видео:Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ

Значения тангенса и котангенса на тригонометрическом круге

В прошлой статье мы познакомились с тригонометрическим кругом и научились находить значения синуса и косинуса основных углов.

Как же быть с тангенсом и котангенсом ? Об этом и поговорим сегодня.

Где же на тригонометрическом круге оси тангенсов и котангенсов?

Ось тангенсов параллельна оси синусов (имеет тоже направление, что ось синусов) и проходит через точку (1; 0).

Ось котангенсов параллельна оси косинусов (имеет тоже направление, что ось косинусов) и проходит через точку (0; 1).

На каждой из осей располагается вот такая цепочка основных значений тангенса и котангенса: Тангенс пи на 3 на окружности равенПочему так?

Я думаю, вы легко сообразите и сами. 🙂 Можно по-разному рассуждать. Можете, например, использовать тот факт, что Тангенс пи на 3 на окружности равени Тангенс пи на 3 на окружности равен

Тангенс пи на 3 на окружности равен

Собственно, картинка за себя сама говорит.

Если не очень все же понятно, разберем примеры:

Пример 1.

Вычислить Тангенс пи на 3 на окружности равен

Находим на круге Тангенс пи на 3 на окружности равен. Эту точку соединяем с точкой (0;0) лучом (начало – точка (0;0)) и смотрим, где этот луч пересекает ось тангенсов. Видим, что Тангенс пи на 3 на окружности равен

Ответ: Тангенс пи на 3 на окружности равен

Пример 2.

Вычислить Тангенс пи на 3 на окружности равен

Находим на круге Тангенс пи на 3 на окружности равен. Точку (0;0) соединяем с указанной точкой лучом. И видим, что луч никогда не пересечет ось тангенсов.

Тангенс пи на 3 на окружности равенне существует.

Ответ: не существует

Пример 3.

Вычислить Тангенс пи на 3 на окружности равен

Тангенс пи на 3 на окружности равен

Находим на круге точку Тангенс пи на 3 на окружности равен(это та же точка, что и Тангенс пи на 3 на окружности равен) и от нее по часовой стрелке (знак минус!) откладываем Тангенс пи на 3 на окружности равен(Тангенс пи на 3 на окружности равен). Куда попадаем? Мы окажемся в точке, что на круге у нас (см. рис.) названа как Тангенс пи на 3 на окружности равен. Эту точку соединяем с точкой (0;0) лучом. Вышли на ось тангенсов в значение Тангенс пи на 3 на окружности равен.

Так значит, Тангенс пи на 3 на окружности равен

Ответ: Тангенс пи на 3 на окружности равен

Пример 4.

Вычислить Тангенс пи на 3 на окружности равен

Тангенс пи на 3 на окружности равен

Поэтому от точки Тангенс пи на 3 на окружности равен(именно там будет Тангенс пи на 3 на окружности равен) откладываем против часовой стрелки Тангенс пи на 3 на окружности равен.

Выходим на ось котангенсов, получаем, что Тангенс пи на 3 на окружности равен

Ответ: Тангенс пи на 3 на окружности равен

Пример 5.

Вычислить Тангенс пи на 3 на окружности равен

Находим на круге Тангенс пи на 3 на окружности равен. Эту точку соединяем с точкой (0; 0). Выходим на ось котангенсов. Видим, что Тангенс пи на 3 на окружности равен

Ответ: Тангенс пи на 3 на окружности равен

Тангенс пи на 3 на окружности равенТеперь, умея находить по тригонометрическому кругу значения тригонометрических функций (а я надеюсь, что статья, где мы начинали знакомство с кругом и учились вычислять значения синусов и косинусов, вами прочитана…), вы можете пройт и тест по теме «Нахождение значений косинуса, синуса, тангенса и котангенса различных углов».

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Таблица ТАНГЕНСОВ для углов от 0° до 360° градусов

ТАНГЕНС (Tg α) острого угла в прямоугольном треугольнике равняется отношение противолежащего катета к прилежащему катету.

Малая таблица значений тригонометрических функций (в радианах и градусах)

α (радианы)0π/6π/4π/3π/2π3π/2
α (градусы)30°45°60°90°180°270°360°
tg α (Тангенс)01/31300

Полная таблица тангенсов для углов от 0° до 360°

Угол в градусахtg (Тангенс)
0
0.0175
0.0349
0.0524
0.0699
0.0875
0.1051
0.1228
0.1405
0.1584
10°0.1763
11°0.1944
12°0.2126
13°0.2309
14°0.2493
15°0.2679
16°0.2867
17°0.3057
18°0.3249
19°0.3443
20°0.364
21°0.3839
22°0.404
23°0.4245
24°0.4452
25°0.4663
26°0.4877
27°0.5095
28°0.5317
29°0.5543
30°0.5774
31°0.6009
32°0.6249
33°0.6494
34°0.6745
35°0.7002
36°0.7265
37°0.7536
38°0.7813
39°0.8098
40°0.8391
41°0.8693
42°0.9004
43°0.9325
44°0.9657
45°1
46°1.0355
47°1.0724
48°1.1106
49°1.1504
50°1.1918
51°1.2349
52°1.2799
53°1.327
54°1.3764
55°1.4281
56°1.4826
57°1.5399
58°1.6003
59°1.6643
60°1.7321
61°1.804
62°1.8807
63°1.9626
64°2.0503
65°2.1445
66°2.246
67°2.3559
68°2.4751
69°2.6051
70°2.7475
71°2.9042
72°3.0777
73°3.2709
74°3.4874
75°3.7321
76°4.0108
77°4.3315
78°4.7046
79°5.1446
80°5.6713
81°6.3138
82°7.1154
83°8.1443
84°9.5144
85°11.4301
86°14.3007
87°19.0811
88°28.6363
89°57.29
90°

Таблица тангенсов для углов от 91° до 180°

Уголtg (Тангенс)
91°-57.29
92°-28.6363
93°-19.0811
94°-14.3007
95°-11.4301
96°-9.5144
97°-8.1443
98°-7.1154
99°-6.3138
100°-5.6713
101°-5.1446
102°-4.7046
103°-4.3315
104°-4.0108
105°-3.7321
106°-3.4874
107°-3.2709
108°-3.0777
109°-2.9042
110°-2.7475
111°-2.6051
112°-2.4751
113°-2.3559
114°-2.246
115°-2.1445
116°-2.0503
117°-1.9626
118°-1.8807
119°-1.804
120°-1.7321
121°-1.6643
122°-1.6003
123°-1.5399
124°-1.4826
125°-1.4281
126°-1.3764
127°-1.327
128°-1.2799
129°-1.2349
130°-1.1918
131°-1.1504
132°-1.1106
133°-1.0724
134°-1.0355
135°-1
136°-0.9657
137°-0.9325
138°-0.9004
139°-0.8693
140°-0.8391
141°-0.8098
142°-0.7813
143°-0.7536
144°-0.7265
145°-0.7002
146°-0.6745
147°-0.6494
148°-0.6249
149°-0.6009
150°-0.5774
151°-0.5543
152°-0.5317
153°-0.5095
154°-0.4877
155°-0.4663
156°-0.4452
157°-0.4245
158°-0.404
159°-0.3839
160°-0.364
161°-0.3443
162°-0.3249
163°-0.3057
164°-0.2867
165°-0.2679
166°-0.2493
167°-0.2309
168°-0.2126
169°-0.1944
170°-0.1763
171°-0.1584
172°-0.1405
173°-0.1228
174°-0.1051
175°-0.0875
176°-0.0699
177°-0.0524
178°-0.0349
179°-0.0175
180°0

Таблица тангенсов для углов от 181° до 270°

Уголtg (Тангенс)
181°0.0175
182°0.0349
183°0.0524
184°0.0699
185°0.0875
186°0.1051
187°0.1228
188°0.1405
189°0.1584
190°0.1763
191°0.1944
192°0.2126
193°0.2309
194°0.2493
195°0.2679
196°0.2867
197°0.3057
198°0.3249
199°0.3443
200°0.364
201°0.3839
202°0.404
203°0.4245
204°0.4452
205°0.4663
206°0.4877
207°0.5095
208°0.5317
209°0.5543
210°0.5774
211°0.6009
212°0.6249
213°0.6494
214°0.6745
215°0.7002
216°0.7265
217°0.7536
218°0.7813
219°0.8098
220°0.8391
221°0.8693
222°0.9004
223°0.9325
224°0.9657
225°1
226°1.0355
227°1.0724
228°1.1106
229°1.1504
230°1.1918
231°1.2349
232°1.2799
233°1.327
234°1.3764
235°1.4281
236°1.4826
237°1.5399
238°1.6003
239°1.6643
240°1.7321
241°1.804
242°1.8807
243°1.9626
244°2.0503
245°2.1445
246°2.246
247°2.3559
248°2.4751
249°2.6051
250°2.7475
251°2.9042
252°3.0777
253°3.2709
254°3.4874
255°3.7321
256°4.0108
257°4.3315
258°4.7046
259°5.1446
260°5.6713
261°6.3138
262°7.1154
263°8.1443
264°9.5144
265°11.4301
266°14.3007
267°19.0811
268°28.6363
269°57.29
270°

Таблица тангенсов для углов от 271° до 360°

Уголtg (Тангенс)
271°-57.29
272°-28.6363
273°-19.0811
274°-14.3007
275°-11.4301
276°-9.5144
277°-8.1443
278°-7.1154
279°-6.3138
280°-5.6713
281°-5.1446
282°-4.7046
283°-4.3315
284°-4.0108
285°-3.7321
286°-3.4874
287°-3.2709
288°-3.0777
289°-2.9042
290°-2.7475
291°-2.6051
292°-2.4751
293°-2.3559
294°-2.246
295°-2.1445
296°-2.0503
297°-1.9626
298°-1.8807
299°-1.804
300°-1.7321
301°-1.6643
302°-1.6003
303°-1.5399
304°-1.4826
305°-1.4281
306°-1.3764
307°-1.327
308°-1.2799
309°-1.2349
310°-1.1918
311°-1.1504
312°-1.1106
313°-1.0724
314°-1.0355
315°-1
316°-0.9657
317°-0.9325
318°-0.9004
319°-0.8693
320°-0.8391
321°-0.8098
322°-0.7813
323°-0.7536
324°-0.7265
325°-0.7002
326°-0.6745
327°-0.6494
328°-0.6249
329°-0.6009
330°-0.5774
331°-0.5543
332°-0.5317
333°-0.5095
334°-0.4877
335°-0.4663
336°-0.4452
337°-0.4245
338°-0.404
339°-0.3839
340°-0.364
341°-0.3443
342°-0.3249
343°-0.3057
344°-0.2867
345°-0.2679
346°-0.2493
347°-0.2309
348°-0.2126
349°-0.1944
350°-0.1763
351°-0.1584
352°-0.1405
353°-0.1228
354°-0.1051
355°-0.0875
356°-0.0699
357°-0.0524
358°-0.0349
359°-0.0175
360°0

Как распечатать таблицу? Левой кнопкой на компьютерной мишке выделите нужную часть таблицы, на выделенном фоне нажмите правую кнопку мишки и в появившемся меню перейдете в пункт «Печать».

Чему равен тангенс 30? …

— Ищем в таблице соответствующее значение. Правильный ответ: 0.5774

💡 Видео

Как искать точки на тригонометрической окружности.Скачать

Как искать точки на тригонометрической окружности.

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэ

Вычисление значений тригонометрических функцийСкачать

Вычисление значений тригонометрических функций

Как найти значение тригонометрического выражения cosπ/3+2sinπ/2+1/3tg²π/3+4cos π-ctgπ/4 как решатьСкачать

Как найти значение тригонометрического выражения cosπ/3+2sinπ/2+1/3tg²π/3+4cos π-ctgπ/4 как решать

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, Котангенс

Таблица значений тригонометрических функций - как её запомнить!!!Скачать

Таблица значений тригонометрических функций - как её запомнить!!!

6 Линия тангенсов и линия котангенсовСкачать

6 Линия тангенсов и линия котангенсов

Как решать тригонометрические неравенства?Скачать

Как решать тригонометрические неравенства?

Тригонометрическая окружность для непонимающихСкачать

Тригонометрическая окружность для непонимающих

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Синус, Косинус, Тангенс, Котангенс // Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Синус, Косинус, Тангенс, Котангенс // Подготовка к ЕГЭ по Математике

Тангенс и котангенс на тригонометрической окружности. Формулы приведения.Скачать

Тангенс и котангенс на тригонометрической окружности. Формулы приведения.

Радианная Мера Угла - Как Переводить Градусы в Радианы // Урок Алгебры 10 классСкачать

Радианная Мера Угла - Как Переводить Градусы в Радианы // Урок Алгебры 10 класс

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функции
Поделиться или сохранить к себе: