Тангенс корень из 3 на 2 на окружности

Значения тангенса и котангенса на тригонометрическом круге

В прошлой статье мы познакомились с тригонометрическим кругом и научились находить значения синуса и косинуса основных углов.

Как же быть с тангенсом и котангенсом ? Об этом и поговорим сегодня.

Где же на тригонометрическом круге оси тангенсов и котангенсов?

Ось тангенсов параллельна оси синусов (имеет тоже направление, что ось синусов) и проходит через точку (1; 0).

Ось котангенсов параллельна оси косинусов (имеет тоже направление, что ось косинусов) и проходит через точку (0; 1).

На каждой из осей располагается вот такая цепочка основных значений тангенса и котангенса: Тангенс корень из 3 на 2 на окружностиПочему так?

Я думаю, вы легко сообразите и сами. 🙂 Можно по-разному рассуждать. Можете, например, использовать тот факт, что Тангенс корень из 3 на 2 на окружностии Тангенс корень из 3 на 2 на окружности

Тангенс корень из 3 на 2 на окружности

Собственно, картинка за себя сама говорит.

Если не очень все же понятно, разберем примеры:

Пример 1.

Вычислить Тангенс корень из 3 на 2 на окружности

Находим на круге Тангенс корень из 3 на 2 на окружности. Эту точку соединяем с точкой (0;0) лучом (начало – точка (0;0)) и смотрим, где этот луч пересекает ось тангенсов. Видим, что Тангенс корень из 3 на 2 на окружности

Ответ: Тангенс корень из 3 на 2 на окружности

Пример 2.

Вычислить Тангенс корень из 3 на 2 на окружности

Находим на круге Тангенс корень из 3 на 2 на окружности. Точку (0;0) соединяем с указанной точкой лучом. И видим, что луч никогда не пересечет ось тангенсов.

Тангенс корень из 3 на 2 на окружностине существует.

Ответ: не существует

Пример 3.

Вычислить Тангенс корень из 3 на 2 на окружности

Тангенс корень из 3 на 2 на окружности

Находим на круге точку Тангенс корень из 3 на 2 на окружности(это та же точка, что и Тангенс корень из 3 на 2 на окружности) и от нее по часовой стрелке (знак минус!) откладываем Тангенс корень из 3 на 2 на окружности(Тангенс корень из 3 на 2 на окружности). Куда попадаем? Мы окажемся в точке, что на круге у нас (см. рис.) названа как Тангенс корень из 3 на 2 на окружности. Эту точку соединяем с точкой (0;0) лучом. Вышли на ось тангенсов в значение Тангенс корень из 3 на 2 на окружности.

Так значит, Тангенс корень из 3 на 2 на окружности

Ответ: Тангенс корень из 3 на 2 на окружности

Пример 4.

Вычислить Тангенс корень из 3 на 2 на окружности

Тангенс корень из 3 на 2 на окружности

Поэтому от точки Тангенс корень из 3 на 2 на окружности(именно там будет Тангенс корень из 3 на 2 на окружности) откладываем против часовой стрелки Тангенс корень из 3 на 2 на окружности.

Выходим на ось котангенсов, получаем, что Тангенс корень из 3 на 2 на окружности

Ответ: Тангенс корень из 3 на 2 на окружности

Пример 5.

Вычислить Тангенс корень из 3 на 2 на окружности

Находим на круге Тангенс корень из 3 на 2 на окружности. Эту точку соединяем с точкой (0; 0). Выходим на ось котангенсов. Видим, что Тангенс корень из 3 на 2 на окружности

Ответ: Тангенс корень из 3 на 2 на окружности

Тангенс корень из 3 на 2 на окружностиТеперь, умея находить по тригонометрическому кругу значения тригонометрических функций (а я надеюсь, что статья, где мы начинали знакомство с кругом и учились вычислять значения синусов и косинусов, вами прочитана…), вы можете пройт и тест по теме «Нахождение значений косинуса, синуса, тангенса и котангенса различных углов».

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Видео:Как видеть тангенс? Тангенс угла с помощью единичного круга.Скачать

Как видеть тангенс? Тангенс угла с помощью единичного круга.

Тригонометрический круг: вся тригонометрия на одном рисунке

Тригонометрический круг — это самый простой способ начать осваивать тригонометрию. Он легко запоминается, и на нём есть всё необходимое.
Тригонометрический круг заменяет десяток таблиц.

  • Тангенс корень из 3 на 2 на окружности

Вот что мы видим на этом рисунке:

  • Перевод градусов в радианы и наоборот. Полный круг содержит градусов, или радиан.
  • Значения синусов и косинусов основных углов. Помним, что значение косинуса угла мы находим на оси , а значение синуса — на оси .
  • И синус, и косинус принимают значения от до .
  • Значение тангенса угла тоже легко найти — поделив на . А чтобы найти котангенс — наоборот, косинус делим на синус.
  • Знаки синуса, косинуса, тангенса и котангенса.
  • Синус — функция нечётная, косинус — чётная.
  • Тригонометрический круг поможет увидеть, что синус и косинус — функции периодические. Период равен .
  • Видео:Алгебра 10 класс. 2 октября. Тангенс и котангенс на окружностиСкачать

    Алгебра 10 класс. 2 октября. Тангенс и котангенс на окружности

    А теперь подробно о тригонометрическом круге:

    Нарисована единичная окружность — то есть окружность с радиусом, равным единице, и с центром в начале системы координат. Той самой системы координат с осями и , в которой мы привыкли рисовать графики функций.

    Мы отсчитываем углы от положительного направления оси против часовой стрелки.

    Полный круг — градусов.
    Точка с координатами соответствует углу ноль градусов. Точка с координатами отвечает углу в , точка с координатами — углу в . Каждому углу от нуля до градусов соответствует точка на единичной окружности.

    Косинусом угла называется абсцисса (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Синусом угла называется ордината (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Всё это легко увидеть на нашем рисунке.

    Итак, косинус и синус — координаты точки на единичной окружности, соответствующей данному углу. Косинус — абсцисса , синус — ордината . Поскольку окружность единичная, для любого угла и синус, и косинус находятся в пределах от до :

    Простым следствием теоремы Пифагора является основное тригонометрическое тождество:

    Для того, чтобы узнать знаки синуса и косинуса какого-либо угла, не нужно рисовать отдельных таблиц. Всё уже нарисовано! Находим на нашей окружности точку, соответствующую данному углу , смотрим, положительны или отрицательны ее координаты по (это косинус угла ) и по (это синус угла ).

    Принято использовать две единицы измерения углов: градусы и радианы. Перевести градусы в радианы просто: градусов, то есть полный круг, соответствует радиан. На нашем рисунке подписаны и градусы, и радианы.

    Если отсчитывать угол от нуля против часовой стрелки — он положительный. Если отсчитывать по часовой стрелке — угол будет отрицательным. Например, угол — это угол величиной в , который отложили от положительного направления оси по часовой стрелке.

    Легко заметить, что

    Углы могут быть и больше градусов. Например, угол — это два полных оборота по часовой стрелке и еще . Поскольку, сделав несколько полных оборотов по окружности, мы возвращаемся в ту же точку с теми же координатами по и по , значения синуса и косинуса повторяются через . То есть:

    где — целое число. То же самое можно записать в радианах:

    Можно на том же рисунке изобразить ещё и оси тангенсов и котангенсов, но проще посчитать их значения. По определению,

    Видео:Тригонометрическая окружность. Как выучить?Скачать

    Тригонометрическая окружность. Как выучить?

    Тригонометрический круг со всеми значениями, круг синусов и косинусов, линия, ось тангенса на окружности, как пользоваться и находить точки

    В каждой профессии существуют свои инструменты, обеспечивающие решение и качественное выполнение определенных задач. Математики применяют тригонометрический круг, позволяющий легко и быстро вычислить значение какой-либо функции. Однако не все могут им правильно пользоваться, поскольку не понимают основных понятий.

    Тангенс корень из 3 на 2 на окружности

    Видео:Отбор корней по окружностиСкачать

    Отбор корней по окружности

    Общие сведения

    Тангенс корень из 3 на 2 на окружности

    Для правильного решения тригонометрических задач следует изучить основные понятия, формулы, а также методы нахождения основных величин. Раздел математики, изучающий функции косинуса, синуса, тангенса, котангенса, арксинуса, арккосинуса, арктангенса и арккотангенса, называется тригонометрией. Окружность, которая используется для решения геометрических задач на плоскости, имеет единичный радиус.

    Значения функций, которые можно по ней находить, называются тригонометрическими. Однако существует множество способов нахождения их значений, но в некоторых ситуациях при использовании формул приведения решение затянется на продолжительное время, а вычисления будут громоздкими. Чтобы этого избежать, нужно использовать тригонометрический круг со всеми значениями. С его помощью также можно определить, является ли функция четной или нечетной.

    Углы и их классификация

    Перед тем как понять основное назначение тригонометрических функций, следует обратить внимание на классификацию углов. Она является важной для вычисления тригонометрических выражений. Углы в математических дисциплинах делятся на следующие типы:

    Тангенс корень из 3 на 2 на окружности

    К первому типу относятся углы любой размерности градусной единицы измерения, которая не превышает 90 (а Информация о функциях

    Тригонометрических функций всего четыре вида: синус (sin), косинус (cos), тангенс (tg) и котангенс (ctg). Существует столько же типов обратных функций: арксинус (arcsin), арккосинус (arccos), арктангенс (arctg) и арккотангенс (arcctg). Они получили широкое применение не только в математических задачах, но также используются в физике, электронике, электротехнике и других дисциплинах. Основной их особенностью считается возможность представления какого-либо закона.

    Тангенс корень из 3 на 2 на окружности

    Например, зависимость амплитуды напряжения переменного тока от времени описывается следующим законом: u = Um * cos (w*t) (графиком является косинусоида). Гармонические звуковые колебания также подчиняются определенному закону, в котором присутствует тригонометрическая функция. Кроме того, можно находить значения корня тригонометрического уравнения.

    Синусом угла называется величина, равная отношению противолежащего катета прямоугольного треугольника к его гипотенузе. Следовательно, косинус — отношение прилежащего катета к гипотенузе. Тангенс — отношение величины противолежащего катета к прилежащему. Котангенс является обратной функцией тангенсу, т. е. отношение прилежащего к противолежащему.

    Функции arcsin, arccos, arctg, arcctg применяются в том случае, когда нужно найти значение угла в градусах или радианах. Вычисления выполняются по специальным таблицам Брадиса или с помощью программ. Также можно использовать тригонометрическую окружность.

    Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

    Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

    Тригонометрический круг

    Чтобы воспользоваться тригонометрической окружностью для решения задач, нужны такие базовые знания: понятие о синусе, косинусе, тангенсе, котангенсе, системе координат и теореме Пифагора. Для построения единичной окружности используется декартовая система координат с двумя осями. Точка «О» — центр пересечения координатных осей, ОХ — ось абсцисс, ОУ — ординат.

    Для решения задач различного типа применяется и теорема Пифагора. Она справедлива только для прямоугольного треугольника (один из углов — прямой). Ее формулировка следующая: квадрат гипотенузы в произвольном прямоугольном треугольнике равен сумме квадратов катетов. Следует также знать основные соотношения между функциями острых углов в заданном прямоугольном треугольнике:

    Тангенс корень из 3 на 2 на окружности

    • a + b = 180.
    • cos(a) = sin(b).
    • cos(b) = sin(a).
    • tg(a) = ctg(b).
    • tg(b) = ctg(a).
    • tg(a) = 1 / ctg(a).
    • tg(b) = 1 / ctg(b).

    Существуют и другие тригонометрические тождества, но для работы с кругом этого перечня будет достаточно.

    Построение «инструмента»

    Тангенс корень из 3 на 2 на окружности

    Построить окружность, которая ускорит процесс решения задач, довольно просто. Для этого потребуются бумага, карандаш, резинка и циркуль. Далее необходимо нарисовать любую немаленькую окружность. После этого отметить ее центр карандашом, поставив точку. Пусть она будет называться «О». Через эту точку следует провести две перпендикулярные прямые (угол пересечения равен 90 градусам). Обозначить их следующим образом: «х» (горизонтальная) и «у» (вертикальная).

    Окружность является единичной, но не стоит рисовать ее такой, поскольку работать будет неудобно. Этот прием называется масштабированием. Он широко применяется практически во всех сферах человеческой деятельности. Например, инженеры не чертят двигатель космического корабля в натуральную величину, поскольку с таким «рисунком» будет неудобно и невозможно работать. Они используют его макет.

    Окружность пересекается с осями декартовой системы координат в 4 точках со следующими координатами: (1;0), (0;1), (-1;0) и (0;-1). Области, которые делят декартовую систему координат на 4 части, называются четвертями. Их четыре:

    • Первая состоит из положительных координат по х и у.
    • Вторая имеет по х отрицательные и положительные по у.
    • Третья — только отрицательные значения.
    • Четвертая — положительные значения по х и отрицательные по у.

    Исходя из этих особенностей, определяется числовой знак функции, позволяющий определить ее четность и нечетность. Кроме того, на ней следует отметить углы следующим образом: 0 и 2ПИ соответствует точке с координатами (1;0), ПИ/2 — (0;1), ПИ — (-1;0) и 3ПИ/2 — (0;-1).

    Готовый макет

    Для решения задач специалисты рекомендуют иметь рабочий и готовый макеты тригонометрических окружностей. Первый применяется для нахождения значений нестандартных углов (например, синуса 185 градусов). Тригонометрическим кругом (рис. 1) удобно пользоваться в том случае, когда значение угла является стандартным (90, 60 и т. д.).

    Тангенс корень из 3 на 2 на окружности

    Рисунок 1. Готовый макет тригонометрического круга синусов и косинусов.

    Для нахождения необходимых значений объединяют две фигуры — единичную окружность и прямоугольный треугольник. Гипотенуза последнего равна 1 и соответствует радиусу окружности. Ось ОХ — косинусы, ОУ — синусы. С помощью этого «инструмента» определение синусов и косинусов становится намного проще. Для нахождения значения sin(30) необходимо воспользоваться следующим алгоритмом:

    • Отметить угол на окружности и достроить его до прямоугольного треугольника.
    • Если катет лежит напротив угла в 30 градусов, то он равен 0,5 от длины гипотенузы.
    • sin(30) = 1 * 0,5 = 0,5.

    Тангенс корень из 3 на 2 на окружности

    Для нахождения косинуса необходимо использовать основное тригонометрическое тождество, которое связывает sin и cos: (sin(a))^2 + (cos(a))^2 = 1. Из равенства величина cos(30) = sqrt[1 — (sin(30))^2]= sqrt[1 — 0,5^2] = sqrt(3) / 2.

    Однако после всех вычислений следует выбрать знак функции. В данном случае угол находится в первой четверти. Следовательно, функция имеет положительный знак. Для нахождения тангенса и котангенса можно воспользоваться следующими формулами: tg(a) = sin(a) / cos(a) и ctg(a) = cos(a) / sin(a). Подставив значения синуса и косинуса, можно определить значение tg: tg(30) = 0,5 / (sqrt(3) / 2) = 1 / sqrt(3) = sqrt(3) / 3. Тогда котангенс можно найти двумя способами:

    • Через известный тангенс: ctg(30) = 1 / (1 / sqrt(3)) = sqrt(3).
    • Использовать основное отношение: ctg(30) = (sqrt(3) / 2) / (1/2) = sqrt(3).

    Вычислить значения синуса и косинуса для угла 60 градусов очень просто. Для этого нужно воспользоваться основными тождествами: sin(60) = сos(30) = sqrt(3) / 2, cos(60) = sin(30) = 1/2, tg(30) = ctg(60) = sqrt(3) / 3, tg(60) = ctg(30) = sqrt(3). Значения для 45 градусов определяются следующим образом:

    • Прямоугольный треугольник с углом 45 градусов является равносторонним (катеты равны).
    • (sin(45))^2 + (cos(45))^2 = 1.
    • 2 * (sin(45))^2 = 1.
    • sin(45) + cos(45) = sqrt(2) / 2.

    Тангенс и котангенс равен 1. Если угол равен 90, то необходимо внимательно посмотреть на рисунок 1. Следовательно, sin(90) = 1, cos(90) = 0, tg(90) = 1 и ctg(90) не существует. Линия тангенса на окружности не отображается. В этом случае нужно пользоваться основными тригонометрическими тождествами.

    Правила использования

    Инструмент позволяет легко и быстро находить значения тригонометрических функций любых углов. Если при решении задачи требуется найти sin(270), то нужно выполнить простые действия:

    • Пройти против часовой стрелки (положительное направление) 180 градусов, а затем еще 90.
    • На оси синусов значение составляет -1 (точка лежит на оси).

    Тангенс корень из 3 на 2 на окружности

    Существуют задачи, в которых угол представлен отрицательным значением. Например, нужно определить синус, косинус, тангенс и котангенс угла (-7ПИ/6). В некоторых случаях заданное значение следует перевести в градусы: -7ПИ/6 = -210 (градусам). Если в условии отрицательный угол, то движение следует осуществлять по часовой стрелке от нулевого значения (пройти полкруга, а затем еще 30). Можно сделать вывод о том, что значение -210 соответствует 30. Следовательно, синус вычисляется следующим образом: sin(-210) = -(sin(ПИ + 30)) = — 1/2, cos(-210) = sqrt(3)/2, tg(-210) = sqrt(3)/3 и ctg(-210) = sqrt(3).

    Пример случая, когда нет необходимости переводить радианы в градусы, является следующим: нужно вычислить значения тригонометрических функций угла 5ПИ/4. Необходимо расписать значение угла таким образом: 5ПИ/4 = ПИ + ПИ/4. Против часовой стрелки следует пройти половину круга (ПИ), а затем его четвертую часть (ПИ/4). Далее нужно спроецировать координаты точки на ось синусов и косинусов. Это соответствует значению sqrt(2)/2. Тангенс и котангенс заданного угла будут равны 1.

    Встречаются задачи, в которых значение угла превышает 360 градусов. Например, требуется найти значения тригонометрических функций угла (-25ПИ/6). Для решения необходимо разложить угол следующим образом: (-25ПИ/6) = — (4ПИ + ПИ/6). Можно не делать обороты, поскольку 4ПИ соответствует двойному обороту и возврату в точку (-ПИ/6). Это объясняется периодом функций синуса и косинуса, который равен 2ПИ. Значения функций sin, сos, tg и ctg равны следующим значениям: — 1/2, sqrt(3)/2, sqrt(3)/3 и sqrt(3) соответственно.

    Таким образом, тригонометрический круг позволяет оптимизировать вычисления в дисциплинах с физико-математическим уклоном, в которых используются тригонометрические функции. Не имеет смысла устанавливать дополнительное программное обеспечение, пользоваться таблицами, поскольку это занимает некоторое время. При помощи этого «универсального инструмента» можно найти значение любого угла.

    🎬 Видео

    Отбор корней по окружностиСкачать

    Отбор корней по окружности

    ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать

    ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функции

    10 класс, 11 урок, Числовая окружностьСкачать

    10 класс, 11 урок, Числовая окружность

    Как искать точки на тригонометрической окружности.Скачать

    Как искать точки на тригонометрической окружности.

    6 Линия тангенсов и линия котангенсовСкачать

    6 Линия тангенсов и линия котангенсов

    Как решать тригонометрические неравенства?Скачать

    Как решать тригонометрические неравенства?

    3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать

    3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из Вебиума

    🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)Скачать

    🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)

    3 СПОСОБА ОТБОРА КОРНЕЙ В ЗАДАНИИ #12 (по окружности, неравенством и подбором)Скачать

    3 СПОСОБА ОТБОРА КОРНЕЙ В ЗАДАНИИ #12 (по окружности, неравенством и подбором)

    Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

    Синус, косинус, тангенс, котангенс за 5 МИНУТ

    Решить неравенство tg xСкачать

    Решить неравенство tg x

    Три способа отбора корней в задании 13 ЕГЭ профильСкачать

    Три способа отбора корней в задании 13 ЕГЭ профиль

    ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Синус, Косинус, Тангенс, Котангенс // Подготовка к ЕГЭ по МатематикеСкачать

    ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Синус, Косинус, Тангенс, Котангенс // Подготовка к ЕГЭ по Математике

    Тригонометрическая окружность для непонимающихСкачать

    Тригонометрическая окружность для непонимающих

    Тригонометрическая окружность (2) / таблица значений sin, cos, tg, ctgСкачать

    Тригонометрическая окружность (2) / таблица значений sin, cos, tg, ctg
    Поделиться или сохранить к себе: