Таблица радиусов сторон окружностей

Как найти радиус окружности

Таблица радиусов сторон окружностей

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Видео:9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороны

Основные понятия

Прежде чем погружаться в последовательность расчетов, важно понять разницу между понятиями.

Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра, которая лежит в той же плоскости. Если говорить проще, то это замкнутая линия, как, например, обруч и кольцо.

Круг — множество точек на плоскости, которые удалены от центра на расстоянии равном радиусу. Иначе говоря, плоская фигура, ограниченная окружностью, как мяч и блюдце.

Радиус — это отрезок, который соединяет центр окружности и любую точку на ней. Общепринятое обозначение радиуса — латинская буква R.

Возможно тебе интересно узнать — как найти длину окружности?

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Формула радиуса окружности

Определить способ вычисления проще, отталкиваясь от исходных данных. Далее рассмотрим девять формул разной степени сложности.

Видео:Формулы радиусов описанной и вписанной окружностей правильного многоугольника 2Скачать

Формулы радиусов описанной и вписанной окружностей правильного многоугольника 2

Если известна площадь круга

R = √ S : π, где S — площадь круга, π — это константа, которая выражает отношение длины окружности к диаметру, она всегда равна 3,14.

Видео:Формулы для вычисления площади правильного многоугольника,его стороны и радиуса вписанной окружностиСкачать

Формулы для вычисления площади правильного многоугольника,его стороны и радиуса вписанной окружности

Если известна длина

R = P : 2 * π, где P — длина (периметр круга).

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

Видео:Радиус описанной окружностиСкачать

Радиус описанной окружности

Если известен диаметр окружности

R = D : 2, где D — диаметр.

Диаметр — отрезок, который соединяет две точки окружности и проходит через центр. Радиус всегда равен половине диаметра.

Видео:Задание № 1088 — Геометрия 9 класс (Атанасян)Скачать

Задание № 1088 — Геометрия 9 класс (Атанасян)

Если известна диагональ вписанного прямоугольника

R = d : 2, где d — диагональ.

Диагональ вписанного прямоугольник делит фигуру на два прямоугольных треугольника и является их гипотенузой — стороной, лежащей напротив прямого угла. Если диагональ неизвестна, теорема Пифагора поможет её вычислить:

d = √ a 2 + b 2 , где a, b — стороны вписанного прямоугольника.

Видео:№1101. Перечертите таблицу и, используя формулу длины С окружности радиуса R, заполнитеСкачать

№1101. Перечертите таблицу и, используя формулу длины С окружности радиуса R, заполните

Если известна сторона описанного квадрата

R = a : 2, где a — сторона.

Сторона описанного квадрата равна диаметру окружности.

Видео:Деление окружности на 3; 6; 12 равных частейСкачать

Деление окружности на 3; 6; 12 равных частей

Если известны стороны и площадь вписанного треугольника

R = (a * b * c) : (4 * S), где a, b, с — стороны, S — площадь треугольника.

Видео:Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Если известна площадь и полупериметр описанного треугольника

R = S : p, где S — площадь треугольника, p — полупериметр треугольника.

Полупериметр треугольника — это сумма длин всех его сторон, деленная на два.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Если известна площадь сектора и его центральный угол

R = √ (360° * S) : (π * α), где S — площадь сектора круга, α — центральный угол.

Площадь сектора круга — это часть S всей фигуры, ограниченной окружностью с радиусом.

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Если известна сторона вписанного правильного многоугольника

R = a : (2 * sin (180 : N)), где a — сторона правильного многоугольника, N — количество сторон.

В правильном многоугольнике все стороны равны.

Видео:ВСЕ О СЕЧЕНИЯХ В СТЕРЕОМЕТРИИСкачать

ВСЕ О СЕЧЕНИЯХ В СТЕРЕОМЕТРИИ

Скачать онлайн таблицу

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу и использовать, как закладку в тетрадке или учебнике, и обращаться к ней по необходимости.

Видео:Отбор корней по окружностиСкачать

Отбор корней по окружности

Радиус и диаметр окружности

Окружность — это фигура в геометрии, которая состоит
из множества точек, расположенных на одинаковом
расстоянии от заданной точки (центра окружности).

Радиус окружности — это отрезок, который соединяет
центр окружности с какой-либо точкой окружности.

Диаметр окружности — это отрезок, который соединяет
две любые точки окружности, причем сам отрезок
должен проходить через центр окружности

Eсли от центра окружности провести
отрезки ко всем точкам окружности, то они будут иметь
одинаковую длину, то есть равны. В математике
такие отрезки называют радиусами.

Все радиусы окружности, как и диаметры окружности,
равны между собой, имеют одинаковую длину.

Таблица радиусов сторон окружностей

На рисунке выше изображена окружность, с центром в точке O.
OA = OB = OC — радиусы окружности;
BC = CO + OB — диаметр окружности;

Радиус окружности принято обозначать маленькой либо большой буквой, r или R.
Диаметр окружности обозначают буквой D.

Диаметр окружности условно состоит из двух
радиусов и равен длинам этих радиусов.

Длину радиуса окружности можно найти через диаметр окружности.
Для этого достаточно разделить на два длину диаметра окружности,
получившееся число и будет радиусом.

Формула радиуса окружности через диаметр:

Формула диаметра окружности через радиус:

Также, окружность, может быть вписанной в фигуру, описанной
около фигуры; или вообще может быть не вписана и не описана.
Формула радиуса окружности зависит от того находится фигура
внутри окружности, или окружность находится около фигуры.

Существует радиус вписанной окружности
и радиус описанной окружности.

Формулы радиуса вписанной и радиуса описанной окружностей
зависят в первую очередь от геометрической фигуры.

Радиус вписанной окружности — это радиус окружности,
которая вписана в геометрическую фигуру.

Радиус описанной окружности — это радиус окружности,
которая описана около геометрической фигуры.

Видео:Радианная мера угла. 9 класс.Скачать

Радианная мера угла. 9 класс.

Таблица радиус диаметр площадь

РадиусДиаметрПлощадь
123.14
2412.57
3628.27
4850.27
51078.54

Смотрите также калькулятор — расчет площади круга.

С помощью этого онлайн калькулятора вы можете заполнить таблицу радиуса, диаметра и площади.

Любые табличные данные важны в научных и практических работах.

— выполнение прикладных расчетов

— оценка влияния тех или иных факторов на объект исследования

В проектной деятельности любое решение должно подтверждаться научно подтвержденными данными.

Лучшей формой отображения данных безусловно является таблица.

В табличной форме отображение данных наиболее структурировано с точки зрения визуального восприятия математических, физических, конструкционных или иных сведений.

Таблица радиуса, диаметра и площади по математической формуле применяется для быстрого определения соотношения между значениями радиуса, диаметра и площади в математических расчетах.

💥 Видео

1 2 4 сопряжение окружностейСкачать

1 2 4  сопряжение окружностей

Задание № 1087 — Геометрия 9 класс (Атанасян)Скачать

Задание № 1087 — Геометрия 9 класс (Атанасян)

112. Формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписаннойСкачать

112. Формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписанной

Задача 6 №27934 ЕГЭ по математике. Урок 148Скачать

Задача 6 №27934 ЕГЭ по математике. Урок 148

Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

Задача 6 №27917 ЕГЭ по математике. Урок 134Скачать

Задача 6 №27917 ЕГЭ по математике. Урок 134
Поделиться или сохранить к себе: