- Треугольники общего вида.
- Свойства медиан:
- Свойства высот:
- Прямоугольный треугольник и его свойства:
- Некоторые свойства прямоугольного треугольника:
- Соотношение между сторонами и углами в прямоугольном треугольнике:
- Значения тригонометрических функций некоторых углов:
- Тригонометрические тождества:
- Подобие треугольников
- Признаки подобия треугольников:
- Теорема синусов
- Теорема косинусов
- Определение и свойства высоты треугольника
- Определение высоты треугольника
- Высота в разных видах треугольников
- Свойства высоты треугольника
- Свойство 1
- Свойство 2
- Свойство 3
- Свойство 4
- math4school.ru
- Треугольники
- Основные свойства
- Равенство треугольников
- Подобие треугольников
- Медианы треугольника
- Биссектрисы треугольника
- Высоты треугольника
- Серединные перпендикуляры
- Окружность, вписанная в треугольник
- Окружность, описанная около треугольника
- Расположение центра описанной окружности
- Равнобедренный треугольник
- Равносторонний треугольник
- Прямоугольный треугольник
- Вневписанные окружности
- Теоремы синусов, косинусов, тангенсов; формулы Мольвейде
Видео:Высота, биссектриса, медиана. 7 класс.Скачать
Треугольники общего вида.
Основные свойства треугольников:
- Сумма всех углов в треугольнике равна $180°$.
- В равнобедренном треугольнике углы при основании равны.
- В равнобедренном треугольнике высота, проведенная к основанию, одновременно является медианой и биссектрисой.
- В равностороннем треугольнике все углы по $60°$.
- Внешний угол треугольника равен сумме двух углов, не смежных с ним.
- Средняя линия треугольника параллельна основанию и равна его половине.
$MN$ — средняя линия, так как соединяет середины соседних сторон.
Биссектриса — это линия, которая делит угол пополам.
- В равнобедренном треугольнике биссектриса, проведённая из вершины к основанию, является также и медианой, и высотой.
- Три биссектрисы в треугольнике пересекаются в одной точке, эта точка является центром вписанной в треугольник окружности.
- Биссектрисы смежных углов перпендикулярны.
- В треугольнике биссектриса угла делит противоположную сторону на отрезки, отношение которых такое же, как отношение сторон треугольника, между которыми эта биссектриса прошла.
Медиана — это линия, проведенная из вершины треугольника к середине противоположной стороны.
Свойства медиан:
1. Медиана делит треугольник на два равновеликих треугольника, т.е. на два треугольника, у которых площади равны.
2. Медианы пересекаются в одной точке и этой точкой делятся в отношении два к одному, считая от вершины.
3. В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы и радиусу описанной около этого треугольника окружности.
Высота в треугольнике — это линия, проведенная из вершины треугольника к противоположной стороне под углом в 90 градусов.
Свойства высот:
1. Три высоты (или их продолжения) пересекаются в одной точке.
2. Угол между высотами в остроугольном треугольнике равен углу между сторонами, к которым эти высоты проведены.
3. Высоты треугольника обратно пропорциональны его сторонам:
Прямоугольный треугольник и его свойства:
В прямоугольном треугольнике катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла.
Некоторые свойства прямоугольного треугольника:
1. Сумма острых углов в прямоугольном треугольнике равна 90 градусов.
2. Катет прямоугольного треугольника, лежащий напротив угла в 30 градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)
3. Медиана прямоугольного треугольника, проведенная к его гипотенузе, равна ее половине и радиусу описанной окружности (R)
4. Медиана прямоугольного треугольника, проведенная к его гипотенузе, делит треугольник на два равнобедренных треугольника, основаниями которых являются катеты данного треугольника.
5. В прямоугольном треугольнике радиус вписанной окружности равен: $r=/$ , где $а$ и $b$ – это катеты, $с$ – гипотенуза.
В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.
Соотношение между сторонами и углами в прямоугольном треугольнике:
В прямоугольном треугольнике $АВС$, с прямым углом $С$
Для острого угла $В: АС$ — противолежащий катет; $ВС$ — прилежащий катет.
Для острого угла $А: ВС$ — противолежащий катет; $АС$ — прилежащий катет.
- Синусом (sin) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
- Косинусом (cos) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
- Тангенсом (tg) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
- Котангенсом (ctg) острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
- В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.
- Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.
- Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения
Значения тригонометрических функций некоторых углов:
$α$ | $30$ | $45$ | $60$ |
$sinα$ | $/$ | $/$ | $/$ |
$cosα$ | $/$ | $/$ | $/$ |
$tgα$ | $/$ | $1$ | $√3$ |
$ctgα$ | $√3$ | $1$ | $/$ |
Тригонометрические тождества:
1. Основное тригонометрическое тождество:
2. Связь между тангенсом и косинусом одного и того же угла:
3. Связь между котангенсом и синусом одного и того же угла:
Подобие треугольников
Два треугольника называются подобными, если их углы соответственно равны, а стороны одного треугольника больше сходственных сторон другого треугольника в некоторое число раз.
Число $k$ — коэффициент подобия (показывает во сколько раз стороны одного треугольника больше сторон другого треугольника.)
- Периметры подобных треугольников и их линейные величины (медианы, биссектрисы, высоты) относятся друг к другу как коэффициент подобия $k$.
- Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.
Признаки подобия треугольников:
- Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
- Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между ними равны, то такие треугольники подобны.
- Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.
Теорема синусов
Во всяком треугольнике стороны относятся как синусы противолежащих углов:
В треугольнике $АВС ВС=16, sin∠A=/$. Найдите радиус окружности, описанной вокруг треугольника $АВС$.
Воспользуемся теоремой синусов:
Отношение стороны к синусу противолежащего угла равно двум радиусам описанной окружности
Далее подставим числовые данные и найдем $R$
Теорема косинусов
Квадрат одной из сторон треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:
Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать
Определение и свойства высоты треугольника
В данной публикации мы рассмотрим определение высоты треугольника, продемонстрируем, как она выглядит в зависимости от вида треугольника, а также перечислим ее основные свойства.
Видео:7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать
Определение высоты треугольника
Высота треугольника – это перпендикуляр, который опущен из вершины фигуры на противоположную сторону.
Основание высоты – точка на противоположной стороне треугольника, которую пересекает высота (или точка пересечения их продолжений).
Обычно высота обозначается буквой h (иногда как ha – это означает, что она проведена к стороне a).
Видео:Геометрия 7 класс (Урок№10 - Первый признак равенства треугольников.)Скачать
Высота в разных видах треугольников
В зависимости от вида фигуры высота может:
- проходить внутри треугольника (в остроугольном △);
- проходить за рамками треугольника (в тупоугольном △);
- являться одним из катетов (в прямоугольном △), за исключением высоты, проведенной к гипотенузе.
Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать
Свойства высоты треугольника
Свойство 1
Все три высоты в треугольнике (или их продолжения) пересекаются в одной точке, которая называется ортоцентром (точка O на чертежах ниже).
- в остроугольном треугольнике;
- в тупоугольном треугольнике;
- в прямоугольном треугольнике.
Вершина A является, в т.ч., точкой пересечения высот.
Свойство 2
При пересечении двух высот в треугольнике, образуются следующие подобные треугольники:
- △ABE∼△CBF: по двум углам (∠ABC – общий, ∠AEB и ∠CFB являются прямыми).
- △AFG∼△CEG: по двум углам (∠AFG и ∠CEG – прямые, ∠AGF и ∠CGE равны как вертикальные углы).
- △ABC∼△BEF: по трем равным углам (∠ABC = ∠EBF, ∠ACB = ∠BFE, ∠CAB = ∠BEF).
Примечание: доказательство подобия последней пары треугольников достаточно длинное и не является целью данной статьи, поэтому подробно останавливаться на нем будем.
Свойство 3
Точка пересечения высот в остроугольном треугольнике является центром окружности, вписанной в его ортотреугольник.
Ортотреугольник – треугольник, вершинами которого являются основания высот △ABC. В нашем случае – это △DEF.
Свойство 4
Точки, которые симметричны ортоцентру треугольника относительно его сторон, лежат на окружности, описанной вокруг этого треугольника.
Примечание: формулы для нахождения высоты треугольника подробно рассмотрены в нашей публикации – “Как найти высоту в треугольнике abc”.
Видео:Признаки равенства треугольников. 7 класс.Скачать
math4school.ru
Видео:Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать
Треугольники
Видео:Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать
Основные свойства
Треугольник – это геометрическая фигура, которая состоит из трёх точек, не лежащих на одной прямой (вершин треугольника) и трёх отрезков с концами в этих точках (сторон треугольника).
Углами (внутренними углами) треугольника называются три угла, каждый из которых образован тремя лучами, выходящими из вершин треугольника и проходящими через две другие вершины.
Внешним углом треугольника называется угол, смежный внутреннему углы треугольника.
Сумма углов треугольника равна 180°:
Внешний угол равен сумме двух внутренних углов, не смежных с ним, и больше любого внутреннего, с ним не смежного:
Длина каждой стороны треугольника больше разности и меньше суммы длин двух других сторон:
В треугольнике против большего угла лежит большая сторона, против большей стороны лежит больший угол:
Средней линией треугольника называется отрезок, который соединяет середины двух его сторон.
Средняя линия треугольника параллельна одной из его сторон и равна её половине:
Видео:Геометрия 7 класс (Урок№9 - Треугольник.)Скачать
Равенство треугольников
Треугольники называются равными, если у них соответствующие стороны равны и соответствующие углы равны:
У равных треугольников все соответствующие элементы равны (стороны, углы, высоты, медианы, биссектрисы, средние линии и т.д.)
В равных треугольниках против равных сторон лежат равные углы, а против равных углов – равные стороны.
Первый признак равенства треугольников.
Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны:
Второй признак равенства треугольников.
Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны:
Третий признак равенства треугольников.
Если три стороны одного треугольника равны соответственно трём сторонам другого треугольника, то такие треугольники равны:
Видео:Первый признак равенства треугольников. 7 класс.Скачать
Подобие треугольников
Подобными называются треугольники, у которых соответствующие стороны пропорциональны.
Коэффициент пропорциональности называется коэффициентом подобия:
Два треугольника подобны, если:
- Два угла одного треугольника равны двум углам другого треугольника.
- Две стороны одного треугольника пропорциональны двум сторонам другого, и углы, образованные этими сторонами, равны.
- Стороны одного треугольника пропорциональны сторонам другого.
У подобных треугольников соответствующие углы равны, а соответствующие отрезки пропорциональны:
Отношение периметров подобных треугольников равно коэффициенту подобия.
Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Прямая, пересекающая две стороны треугольника, и параллельная третьей, отсекает треугольник, подобный данному:
Три средние линии треугольника делят его на четыре равных треугольника, подобные данному, с коэффициентом подобия ½:
Видео:Свойства высот треугольникаСкачать
Медианы треугольника
Медианой треугольника называется отрезок, который соединяет вершину треугольника с серединой противолежащей стороны.
Три медианы треугольника пересекаются в одной точке, делящей медианы в отношении 2:1, считая от вершины:
- Медиана делит треугольник на два равновеликих (с равными площадями) треугольника.
- Три медианы треугольника делят его на шесть равновеликих треугольников:
Длины медиан, проведённых к соответствующим сторонам треугольника, равны:
Видео:7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать
Биссектрисы треугольника
Биссектрисой треугольника, проведённой из данной вершины, называется отрезок биссектрисы угла треугольника, соединяющий эту вершину с точкой на противолежащей стороне.
Биссектрисы внутренних углов треугольника пересекаются в одной точке, находящейся внутри треугольника, равноудалённой от трёх его сторон, которая является центром окружности, вписанной в данный треугольник.
Биссектриса внутреннего угла треугольника делит противолежащую углу сторону на отрезки, пропорциональные двум другим сторонам:
Длина биссектрисы угла А :
Биссектрисы внутреннего и смежного с ним внешнего угла перпендикулярны.
Биссектриса внешнего угла треугольника делит (внешне) противолежащую сторону на отрезки, пропорциональные двум другим сторонам.
BL – биссектриса угла В ;
ВЕ – биссектриса внешнего угла СВК :
Видео:Свойства равнобедренного треугольника. 7 класс.Скачать
Высоты треугольника
Высотой треугольника называется перпендикуляр, опущенный из любой вершины треугольника на противолежащую сторону или на продолжение стороны.
Высоты треугольника пересекаются в одной точке, которая называется ортоцентром треугольника.
Высоты треугольника обратно пропорциональны его сторонам:
Длина высоты, проведённой к стороне а :
Видео:ТРИ ПРИЗНАКА РАВЕНСТВА ТРЕУГОЛЬНИКОВ НА ЕГЭ #shorts #математика #егэ #огэ #профильныйегэ #геометрияСкачать
Серединные перпендикуляры
Серединный перпендикуляр – это прямая, которая проходит через середину стороны треугольника перпендикулярно к ней.
Три серединных перпендикуляра треугольника пересекаются в одной точке, которая является центром окружности, описанной около данного треугольника.
Точка пересечения биссектрисы угла треугольника с серединным перпендикуляром противолежащей стороны лежит на окружности, описанной около данного треугольника.
Видео:Геометрия 7 класс (Урок№14 - Второй и третий признаки равенства треугольников.)Скачать
Окружность, вписанная в треугольник
Окружность называется вписанной в треугольник, если она касается всех его сторон.
Точки касания вписанной окружности сторон треугольника отсекают от его сторон три пары равных между собой отрезков:
Радиус вписанной в треугольник окружности – расстояние от её центра до сторон треугольника:
Видео:8 класс, 37 урок, Теорема о пересечении высот треугольникаСкачать
Окружность, описанная около треугольника
Окружность называется описанной около треугольника, если она проходит через все его вершины.
Радиус описанной окружности:
Видео:СВОЙСТВА ВЫСОТ И ОРТОЦЕНТРАСкачать
Расположение центра описанной окружности
Видео:Свойства прямоугольного треугольника. 7 класс.Скачать
Равнобедренный треугольник
Треугольник называется равнобедренным, если у него две стороны равны. Равные стороны называют боковыми сторонами, а третью – основанием равнобедренного треугольника.
В равнобедренном треугольнике углы при основании равны: ∠ A = ∠ C.
В равнобедренном треугольнике медиана, проведённая к основанию, является и биссектрисой, и высотой: BL – медиана, биссектриса, высота.
Основные формулы для равнобедренного треугольника:
Видео:17. Медианы, биссектрисы и высоты треугольникаСкачать
Равносторонний треугольник
Треугольник у которого все стороны равны называется равносторонним или правильным треугольником.
Центры вписанной и описанной окружностей правильного треугольника совпадают.
Все углы равностороннего треугольника равны:
Каждая медиана равностороннего треугольника совпадает с биссектрисой и высотой, которые проведены из той же вершины:
Основные соотношения для элементов равностороннего треугольника
Видео:ВСЕ ВИДЫ ТРЕУГОЛЬНИКОВ😉 #егэ #огэ #математика #профильныйегэ #shorts #геометрия #образованиеСкачать
Прямоугольный треугольник
Треугольник называется прямоугольным, если у него есть прямой угол.
Стороны, прилежащие к прямому углу, называются катетами, противолежащая прямому углу – гипотенузой.
Прямоугольные треугольники равны если у них равны:
- два катета;
- катет и гипотенуза;
- катет и прилежащий острый угол;
- катет и противолежащий острый угол;
- гипотенуза и острый угол.
- одному острому углу;
- из пропорциональности двух катетов;
- из пропорциональности катета и гипотенузы.
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу:
Высота прямоугольного треугольника, проведённая из вершины прямого угла, есть среднее пропорциональное между проекциями катетов на гипотенузу:
Высота прямоугольного треугольника, проведённая из вершины прямого угла, может быть определена через катеты и их проекции на гипотенузу:
Медиана, проведённая из вершины прямого угла, равна половине гипотенузы:
Высота прямоугольного треугольника, проведённая из вершины прямого угла, делит данный треугольник на два треугольника, подобные данному:
Площадь прямоугольного треугольника можно определить
через катеты:
через катет и острый угол:
через гипотенузу и острый угол:
Центр описанной окружности совпадает с серединой гипотенузы.
Радиус описанной окружности:
Радиус вписанной окружности:
Вневписанные окружности
Три окружности, каждая из которых касается одной стороны (снаружи) и продолжений двух других сторон треугольника, называются вневписанными.
Центр вневписанной окружности лежит не пересечении биссектрисы одного внутреннего угла и биссектрис внешних углов при двух других вершинах.
Так точка О1 , центр одной из вневписанных окружностей Δ ABC , лежит на пересечении биссектрисы ∠ A треугольника ABC и биссектрис BО1 и C О1 внешних углов Δ ABC при вершинах B и C .
Таким образом, шесть биссектрис треугольника – три внутренние и три внешние – пересекаются по три в четырёх точках – центрах вписанной и трёх вневписанных окружностей.
Δ ABC является ортоцентричным в Δ О1О2О3 (точки A , B и C – основания высот в Δ О1О2О3 ).
В Δ ABC углы равны 180°–2 О1 , 180°–2 О2 , 180°–2 О3 .
Радиус окружности, описанной около Δ О1О2О3 , равен 2 R , где R – радиус окружности, описанной около Δ ABC .
Δ ABC имеет наименьший периметр среди всех треугольников, вписанных в Δ О1О2О3 .
Если ra , rb , rс – радиусы вневписанных окружностей в Δ ABC , то в Δ ABC верно:
для r –
для R –
для S –
для самих ra , rb , rс –
Теоремы синусов, косинусов, тангенсов; формулы Мольвейде
Теорема косинусов. Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними:
- если c 2 > a 2 +b 2 , то угол γ – тупой ( cos γ
- если c 2 2 +b 2 , то угол γ – острый ( cos γ > 0 );
- если c 2 = a 2 +b 2 , то угол γ – прямой ( cos γ = 0 ).
Теорема синусов. Стороны треугольника пропорциональны синусам противолежащих углов. Коэффициент пропорциональности равен диаметру описанной окружности:
Теорема тангенсов (формула Региомонтана):