Свойство углов образованных при пересечении параллельных прямых третьей

Свойство углов, образованных при пересечении двух параллельных прямых третьей прямой (формулировки и примеры).

I. Если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны.

II. Если две параллельные прямые пересечены секущей, то сумма внутренних односторонних углов равна 180°.

III. Если две параллельные прямые пересечены секущей, то соответственные углы равны.

Свойство углов образованных при пересечении параллельных прямых третьей

П. Найдите градусную меру угла КАВ, если ABC = 58°.

Решение. Угол КАВ образует пару внутренних односторонних углов с углом ABC при пересечении параллельных прямых KD и CG третьей прямой AL. Поэтому KAB + ABC = 180°, откуда KAB = = 180° — 58° = 122°.

III. Найдите градусную меру угла LBC, если KAB = 122°.

Решение. Угол LBC образует пару соответственных углов с углом КАВ при пересечении параллельных прямых KD и CG третьей прямой AL. Поэтому КАВ = LBC = 122°.

Видео:7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущейСкачать

7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущей

Углы при пересечении двух прямых

Если какие-нибудь две прямые пересечены третьей прямой, то пересекающая их прямая называется секущей по отношению к прямым, которые она пересекает.

При пересечении двух прямых третьей, образуется два вида углов: внешние и внутренние.

Свойство углов образованных при пересечении параллельных прямых третьей

На рисунке изображены две прямые a и b, пересекаемые прямой c. Прямая c по отношению к прямым a и b является секущей. Синим цветом на рисунке обозначены внешние углы (∠1, ∠2, ∠7 и ∠8), а красным — внутренние углы (∠3, ∠4, ∠5 и ∠6).

Также при пересечении двух прямых третьей, образовавшиеся углы получают попарно следующие названия:

Соответственные углы: ∠1 и ∠5, ∠3 и ∠7, ∠2 и ∠6, ∠4 и ∠8.Свойство углов образованных при пересечении параллельных прямых третьей
Внутренние накрест лежащие углы: ∠3 и ∠6, ∠4 и ∠5.Свойство углов образованных при пересечении параллельных прямых третьей
Внешние накрест лежащие углы: ∠1 и ∠8, ∠2 и ∠7.Свойство углов образованных при пересечении параллельных прямых третьей
Внутренние односторонние углы: ∠3 и ∠5, ∠4 и ∠6.Свойство углов образованных при пересечении параллельных прямых третьей
Внешние односторонние углы: ∠1 и ∠7, ∠2 и ∠8.Свойство углов образованных при пересечении параллельных прямых третьей

Видео:Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)Скачать

Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)

Углы при пересечении параллельных прямых

Если секущая пересекает две параллельные прямые линии, то:

  • внутренние накрест лежащие углы равны;
  • сумма внутренних односторонних углов равна 180°;
  • соответственные углы равны;
  • внешние накрест лежащие углы равны;
  • сумма внешних односторонних углов равна 180°.

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Свойство углов образованных при пересечении параллельных прямых третьей

1. Свойство углов, образованных при пересечении двух параллельных прямых третьей прямой (формулировки и примеры)

При пересечении двух прямых секущей, образуется 8 уг-
лов. На рисунке 8 обозначим их цифрами.

Углы 3 и 5, 4 и 6 — накрест лежащие;

Углы 4 и 5, 3 и 6 — односторонние;

Углы 1 и 5, 4 и 8, 2 и 6, 3 и 7 — соответственные.
Если прямые а и Ь на рис.8 параллельны, то эти углы
имеют специальные свойства:

Теорема: Если две параллельные прямые пересечены се-
кущей, то накрест лежащие углы равны.

Теорема: Если две параллельные прямые пересечены секущей, то соответственные углы равны.

Теорема: Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°

2. Решение треугольника по двум сторонам и углу между ними.

Решением треугольника называется нахождение всех его шести элементов (трех сторон и трех углов) по каким-нибудь трем заданным элементам, определяющим треугольник.

Решение треугольника по двум сторонам и углу между ними

То есть мы нашли три неизвестных элемента треугольника, а значит, решили треугольник.

3. Задача по теме »Средняя линия треугольника» (типа №46-48)

№46. В треугольнике ABC отмечены точки D и E, которые являются серединами сторон AB и BC соответственно Найдите периметр четырехугольника ADEC, если AB=24 см, BC=32 см и АС=44 см

DE — средняя линия треугольника ABC по определению. По свойству средней линии (средняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьем стороне и равна ее половине)

Периметр четырехугольника ADEC равен

№ 47 . Диагональ квадрата равна 26 см. Найдите периметр

четырехугольника, вершинами которого являются середи-
ны сторон квадрата.

Периметр четырехугольника EFGH равен EF+FG+GH+HE=4EF=4*13=52 cм.

№ 48 . В равностороннем треугольнике QRP отмечены точки S, T и O, которые являются серединами сторон QR, RP и QP соответственно. Найдите периметр параллелограмма QSTO, если периметр треугольника SRT равен 27 см.

ST — средняя линия треугольника QRP, по свойству средней линии она параллельна QP и равна . Треугольники следовательно, т. SPT — равносторонний , и SR=RT=ST, его периметр равен SR+RT+ST= 27 см, откуда получаем, что 3SR=27 cм; SR=9см=RT=ST. QO= = ST=9 см; QS= =SR=9 см. В параллелограмме противоположные стороны равны, значит, SQ=TO. Следовательно, периметр параллелограмма QSTO равен ST+TO+OQ+QS=36см.

4. Задача по теме «Неравенство треугольника»
(типа № 44)

№ 44. Расстояние от точки А до точек В и С равны 3 см и
14 см соответственно, а расстояния от точки D до точек
В и С равны 5 см и б см соответственно. Докажите, что
точки А, В, С и D лежат на одной прямой.

AC=14, AB=3, CD=6, BD=5 (см)

Проведем отрезок AC. Проведем окружность с центром в точке A радиуса 3 см. Точка B лежит на этой окружности. При этом AM=3 cм. Проведем окружность с центром в точке С радиуса 6 см. Точка D лежит на этой окружности. При этом CN=6 см. Тогда MN=AC-AM-CN=5 см. Теперь видим, что BD=5см, тогда и только тогда, когда точки B и D лежат на отрезке AC. Что и требовалось доказать.

🌟 Видео

№203. Найдите все углы, образованные при пересечении двух параллельных прямых а и b секущей сСкачать

№203. Найдите все углы, образованные при пересечении двух параллельных прямых а и b секущей с

ОСНОВНЫЕ ПОНЯТИЯ ГЕОМЕТРИИ 4. Углы, образованные при пересечении двух параллельных прямых третьейСкачать

ОСНОВНЫЕ ПОНЯТИЯ ГЕОМЕТРИИ 4. Углы, образованные при пересечении двух параллельных прямых третьей

Углы при пересечении двух прямых третьейСкачать

Углы при пересечении двух прямых  третьей

Свойства углов, образованных двумя параллельными прямыми и секущей Задачи на признаки параллельностСкачать

Свойства углов, образованных двумя параллельными прямыми и секущей  Задачи на признаки параллельност

Углы, образованные при пересечении двух прямых секущейСкачать

Углы, образованные при пересечении двух прямых секущей

СВОЙСТВО УГЛОВ, ОБРАЗОВАННЫХ ПРИ ПЕРЕСЕЧЕНИИ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ СЕКУЩЕЙСкачать

СВОЙСТВО УГЛОВ, ОБРАЗОВАННЫХ ПРИ ПЕРЕСЕЧЕНИИ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ СЕКУЩЕЙ

ГЕОМЕТРИЯ 7 класс : Соответственные, односторонние и накрест лежащие углыСкачать

ГЕОМЕТРИЯ 7 класс : Соответственные, односторонние и накрест лежащие углы

Углы, образованные при пересечении двух прямых секущейСкачать

Углы, образованные при пересечении двух прямых секущей

Углы при пересечении двух прямых секущей (третьей прямой). Виды углов урок 5. Геометрия 7 класс.Скачать

Углы при пересечении двух прямых секущей (третьей прямой). Виды углов урок 5. Геометрия 7 класс.

7 класс. Геометрия. Урок 13. Свойства углов при пересечении параллельных прямых секущей: теорияСкачать

7 класс. Геометрия. Урок 13. Свойства углов при пересечении параллельных прямых секущей: теория

7 класс, 11 урок, Смежные и вертикальные углыСкачать

7 класс, 11 урок, Смежные и вертикальные углы

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)

Задача про углы образованные от пересечения прямых. Геометрия 7 класс.Скачать

Задача про углы образованные от пересечения прямых. Геометрия 7 класс.

Пары углов в геометрииСкачать

Пары углов в геометрии

7 класс. Геометрия. Параллельность прямых. Признаки и свойства. Углы при пересечении прямых. Урок #7Скачать

7 класс. Геометрия. Параллельность прямых. Признаки и свойства. Углы при пересечении прямых. Урок #7

УГЛЫ ПРИ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ И СЕКУЩЕЙСкачать

УГЛЫ ПРИ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ И СЕКУЩЕЙ

Параллельные прямые — Признак Параллельности Прямых и Свойства УгловСкачать

Параллельные прямые — Признак Параллельности Прямых и Свойства Углов
Поделиться или сохранить к себе: