Свойства транзитивности параллельных прямых в пространстве

§3.3. Свойства параллельных прямых

Две прямые, параллельные третьей, параллельны.

Это свойство называется транзитивностью параллельности прямых.

Пусть прямые a и b одновременно параллельны прямой c. Допустим, что a не параллельна b, тогда прямая a пересекается с прямой b в некоторой точке A, не лежащей на прямой c по условию. Следовательно, мы имеем две прямые a и b, проходящие через точку A, не лежащую на данной прямой c, и одновременно параллельные ей. Это противоречит аксиоме 3.1. Теорема доказана.

Через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной.

Пусть (AB) данная прямая, C – точка, не лежащая на ней. Прямая AC разбивает плоскость на две полуплоскости. Точка B лежит в одной из них. В соответствии с аксиомой 3.2 можно от луча СA отложить угол (ACD), равный углу (CAB), в другую полуплоскость. ∠ACD и ∠CAB – равные внутренние накрест лежащие при прямых AB и CD и секущей (AC) Тогда в силу теоремы 3.1 (AB) || (CD). С учетом аксиомы 3.1 теорема доказана.

Свойство параллельных прямых задается следующей теоремой, обратной к теореме 3.1.

Если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны.

Пусть (AB) || (CD). Предположим, что ∠ACD ≠ ∠BAC. Через точку A проведем прямую AE так, что ∠EAC = ∠ ACD. Но тогда по теореме 3.1 (AE) || (CD), а по условию – (AB) || (CD). В соответствии с теоремой 3.2 (AE) || (AB). Это противоречит теореме 3.3, по которой через точку A, не лежащую на прямой CD, можно провести единственную прямую, параллельную ей. Теорема доказана.

Свойства транзитивности параллельных прямых в пространствеРис. 3.3.1. К теореме 3.4

На основании этой теоремы легко обосновываются следующие свойства.

  • Если две параллельные прямые пересечены третьей прямой, то соответствующие углы равны.
  • Если две параллельные прямые пересечены третьей прямой, то сумма внутренних односторонних углов равна 180°.

Если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой.

Понятие параллельности позволяет ввести следующее новое понятие, которое в дальнейшем понадобится в 11-й главе.

Два луча называются одинаково направленными, если существует такая прямая, что, во-первых, они перпендикулярны этой прямой, во-вторых, лучи лежат в одной полуплоскости относительно этой прямой.

Два луча называются противоположно направленными, если каждый из них одинаково направлен с лучом, дополнительным к другому.

Одинаково направленные лучи AB и CD будем обозначать: [ A B ) ↑ ↑ [ C D ) , а противоположно направленные лучи AB и CD – [ A B ) ↑ ↓ [ C D ) .

Свойства транзитивности параллельных прямых в пространствеРис. 3.3.2.

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Параллельные прямые в пространстве. Параллельность трех прямых

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Свойства транзитивности параллельных прямых в пространстве

На этом уроке мы дадим основные определения и теоремы на тему параллельных прямых в пространстве.
В начале урока рассмотрим определение параллельных прямых в пространстве и докажем теорему о том, что через любую точку пространства можно провести только одну прямую, параллельную данной. Далее докажем лемму о двух параллельных прямых, пересекающих плоскость. И с ее помощью докажем теорему о двух прямых, параллельных третьей прямой.

Видео:Параллельность прямых. 10 класс.Скачать

Параллельность прямых. 10 класс.

Геометрия

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Видео:10 класс, 4 урок, Параллельные прямые в пространствеСкачать

10 класс, 4 урок, Параллельные прямые в пространстве

Параллельные прямые в пространстве

В 7 классе мы уже изучали параллельные прямые. При этом мы рассматривали только прямые, находящиеся на одной плоскости. Сформулируем определение параллельных прямых, которое используется в стереометрии.

Для обозначения параллельности прямых используется специальный символ «||». В частности, запись а||b означает, что а и b– это параллельные прямые.

Рассмотрим для наглядности пример.

На этом рисунке m||n. В свою очередь пары прямых р и m, р и n непараллельны, ведь у них есть общая точка. Прямые h и nтакже непараллельны, но по другой причине – они находятся в разных плос-тях (такие прямые называют скрещивающимися).

Напомним, что в геометрии параллельными могут быть не только прямые, но также отрезки и лучи. Для параллельности отрезков требуется, чтобы они находились на параллельных прямых. Аналогичное правило действует и в отношении лучей.

Докажем одну довольно простую теорему (для удобства мы будем их нумеровать, чтобы потом ссылаться на их номера).

Действительно, пусть в пространстве есть прямая m и точка А. Мы уже знаем, что через них можно провести плос-ть. Обозначим ее буквой α.

По аксиоме параллельности мы можем через А провести единственную прямую n, параллельную m, причем n будет находиться в α. Любая другая прямая в плос-ти α, проходящая через А, не может быть параллельной m, это будет противоречить аксиоме параллельности. Любая прямая, проходящая через А и не находящаяся в α, также не будет параллельна m, ведь в противном случае она по определению параллельности находилась бы с m в одной плос-ти, и тем самым получилось бы, что через m и А проведены две различные плос-ти, а это невозможно.

Заметим ещё один очевидный факт.

Существование такой плос-ти прямо вытекает из определения параллельности. Но нам надо показать, что эта плос-ть – единственная. Пусть есть прямые m и n, причем m||n. Отметим на m точку Р, а на n точки Н и К:

Если бы через m и n можно было провести более одной плос-ти, то каждая из них проходила бы через точки Р, Н и К. Однако через них можно провести лишь единственную плос-ть. Значит, и через m и n проходит лишь одна плос-ть, ч. т. д.

Доказанная теорема показывает, что параллельные прямые однозначно определяют (или задают) плос-ть, проведенную через них.

Докажем ещё одну теорему.

Доказательство. Пусть есть прямые m и n, и m||n. Прямая m пересекает плос-ть α некоторой точке М. Нам надо показать, что и n пересекает α. Проведем через m и nплос-ть β (это можно сделать по теор. 2). Точка M как часть прямой m будет ей принадлежать. Но она же принадлежит и α. Значит, у α и β есть общая точка, то есть они пересекаются. Тогда у них должна быть и общая прямая, которую мы обозначим буквой h:

Точка М должна находиться на прямой h, то есть m и h пересекаются в ней.Значит, h пересекает и прямую n. В противном случае получилось бы, чтобы через M проведено две прямые, h и m, каждая из которых была бы параллельна n. А это невозможно по теор. 1. Обозначим точку пересечения n и h буквой N. Оно будет общей для n и α.

Осталось лишь показать, что других общих точек у n и α нет. Действительно, если бы такая точка была, то вся прямая n должна бы принадлежать β. Тогда n стала бы общей прямой α и β, то есть совпала бы с р.Но р пересекается с m, а n – нет, то есть на самом деле это различные прямые. Получается, что α и n имеют единственную общую точку N, ч. т. д.

Видео:Параллельность прямой и плоскости. 10 класс.Скачать

Параллельность прямой и плоскости. 10 класс.

Параллельность трех прямых в пространстве

Напомним, что в планиметрии параллельные прямые обладали так называемым свойством транзитивности: если m||nи m||р, то и n||р. Оказывается, что это правило верно и в более общем случае, когда прямые находятся в пространстве, а не на единой плос-ти.

Это утверждение иногда именуют признаком параллельности прямых.

Доказательство. Пусть в пространстве располагаются прямые m,n и р, и р||n, а р||m. Надо доказать, что также m||n. То есть надо продемонстрировать, что m и n находятся в одной плос-ти, но не пересекаются. Отметим на n некоторую точку K и проведем через K и m плос-ть α.

Раз n и α имеют общую точку К, то либо n пересекает α, либо n полностью лежит в α. Предположим, что n и α пересекаются. Тогда с α также пересекается и р, ведь р||n(по теор. 3). Из этого вытекает (по всё той же теор. 3), что и m пересекает α, а это не так. Значит, n полностью находиться в α. Получается, что n и m в одной плос-ти.

Осталось показать, что n и m НЕ пересекаются. Действительно, если бы они пересеклись, то через точку их пересечения проходило бы сразу две прямых, параллельных р, что невозможно (по теор. 1). Значит, n и m НЕ пересекаются, а потому представляют собой пару параллельных прямых, ч. т. д.

Теперь мы можем рассмотреть одну интересную задачу.

Задание. В пространстве выбраны произвольные точки М, К, Н и Р, находящиеся в разных плос-тях. Далее отметили середины отрезков:

А – середина МК

В – середина КН

С – середина НР

D – середина РМ

Докажите, что эти середины находятся в одной плос-ти, и четырехугольник АВСD – это параллелограмм.

Решение. Напомним, что мы уже сталкивались с похожей задачей, когда рассматривали так называемый параллелограмм Вариньона. Здесь разница в том, что точки М, К, Н, Р находятся в разных плос-тях.

Сначала рассмотрим ∆НКР. В нем ВС – это средняя линия, ведь она соединяет середины НК и НР. Значит, ВС||РК. В ∆КМР средней линией будет являться AD, и поэтому AD|| КР. По свойству транзитивности (теор. 4) мы можем заключить, что ВС||АD. Это уже показывает, что эти два отрезка, а значит и их точки А, В, С и D, находятся в одной плос-ти, и потому АВСD– плоский четырехугольник.

Далее рассмотрим ∆РМН. Его средняя линия – это СD, поэтому CD||НМ. Аналогично из ∆КНМ можно получить, что АВ||НМ. Отсюда вытекает (по теор. 4), что CD||АВ. В итоге мы получили, что у четырехугольника АВСD противоположные стороны параллельны, и поэтому он по определению представляют собой параллелограмм.

Видео:Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)

Параллельность прямой и плоскости

Ранее мы изучили два случая взаимного расположения прямой и плос-ти. Первый случай возникает, если прямая с плос-тью имеют две общие точки. Тогда, по одной из аксиом стереометрии, вся прямая находиться в плос-ти.

Второй случай возникает, если прямая и плос-ть имеют строго одну общую точку. Тогда говорят, что они пересекаются.

Но возможен и третий случай – прямая и плос-ть вовсе не имеют общих точек. Тогда говорят, что прямая параллельна плоскости.

Для иллюстрации этого примера рассмотрим обычный куб:

Здесь плос-ть, проходящая через нижнюю грань АЕНD, параллельна отрезкам ВС, СG, GF и BF.

Существует теорема, которая представляет собой признак параллельности прямой и плоскости.

Действительно, пусть есть плос-ть α и прямая m, не лежащая в ней. Также в αесть такая прямая n, что m||n. Тогда через mbn можно провести некоторую плос-ть β (по теор. 2):

Так как n принадлежит обеим плос-тям, и α, и β, то она является их границей.Предположим, что у α и m есть хотя бы одна общая точка К. Тогда эта точка будет общей для α и β, то есть она будет находиться на их границе – прямой n. Но тогда получится, что в К пересекаются n и m. Это противоречие, из которого вытекает, что ни одной общей точки у α и m быть не может. Это как раз и значит, что они параллельны, ч. т. д.

Интересно, верно ли обратное утверждение? Вытекает ли из параллельности прямой m и плос-ти α тот факт, что в плос-ти обязательно найдется прямая, параллельная m? Оказывается, что да, и это легко продемонстрировать.

Возьмем такую прямую m и плос-ть α, что m||α. Далее выберем на α любую точку K и проведем через нее такую прямую n, что n||m (по теор. 1):

Раз n проходит через К, то она уже имеет общую точку с α. Тогда возможны лишь два варианта: либо n пересекает α, либо лежит в ней. Но вариант с пересечением на самом деле невозможен, ведь в этом случае и m также должна пересекать α (по теор. 3), а это не так. Значит, n полностью находиться на α.

В результате мы показали, что в α обязательно есть прямая, параллельная m. Более того, немного усложнив наши рассуждения, мы покажем, что таких прямых существует бесконечно много! Продолжим наше построение и проведем через К ещё одну прямую р, находящуюся в α. Она состоит из бесконечного количества различных точек. Через каждую из них мы можем провести прямую, параллельную n и лежащую в α (по аксиоме параллельности):

В силу свойства транзитивности (теор. 3) каждая такая прямая окажется параллельной не только n, но и m.

Вернемся к примеру с кубиком:

Мы уже говорили, что ребра ВС, СG, GF и FB параллельны грани АЕНD. Теперь мы можем строго доказать этот факт. Сначала напомним, что у куба каждая грань – это квадрат, а у него, в свою очередь, параллельны противоположные стороны. Например, АЕFB – квадрат, поэтому BF||АЕ. Но прямая АЕ находится в плос-ти АЕН. Так как плос-ть АЕН содержит прямую АЕ, параллельную BF, то BF||АЕН (по теор. 5). Аналогичное доказательство можно привести и для трех других ребер верхней грани ВСGF.

Докажем ещё пару важных теорем.

Проиллюстрируем теорему картинкой:

Доказать теорему очень просто. Прямые р и m находятся в одной плос-ти α. Если бы они пересекались в некоторой точке N, то она была бы общей для прямой m и плос-ти β, ведь р полностью находится в β. Но этой невозможно, ведь m||β. Значит, и р||m.

Действительно, если прямые m, n и плос-ть α соответствуют условиям теоремы, то n не может пересекать α, иначе и m также ее пересекало бы (по теор. 3). Значит, остаются только те два варианта, которые упомянуты в теореме.

Теперь мы можем ознакомиться с некоторыми задачами. Перед просмотром решения попытайтесь самостоятельно их решить.

Задание. Верно ли, что все прямые, пересекающие две параллельные прямые m и n, находятся в одной и той же плос-ти?

Решение.m и n как параллельные прямые лежат в единственной плос-ти α (теор. 2). Любая прямая, пересекающая m и n в каких-то точках M и N, уже имеет с α две общие точки – как раз M и N. Значит, она целиком принадлежит α. Таким образом, любые прямые, пересекающие m и n, будут располагаться в одной и той же плос-ти α.

Задание. Две смежные стороны параллелограмма пересекают плос-ть α. Каково взаимное положение этой плос-ти и двух других сторон этого параллелограмма?

Решение. Пусть в параллелограмме МНРК c α пересекаются стороны МН и НР. По определению параллелограмма МН||РК, а НР||КМ. Если одна из двух параллельных прямых пересекает плос-ть, то и другая делает то же самое (по теор. 3). Поэтому РК и КМ ведут себя также, как МН и НР, то есть также пересекают α.

Задание. Через среднюю линию трапеции проведена плос-ть α. Могут ли основания трапеции пересечь эту же плос-ть?

Решение. Основания трапеции параллельны ее средней линии. Если бы они пересекли α, то и средняя линия обязательно пересекала бы α (по теор. 3), а это не так. Значит, основания никак не могут пересечься с α.

Задание. В пространстве через концы отрезка АВ и его середину (оно обозначается буквой М) построены параллельные прямые. Они пересекают плос-тьα в точках А1, В1 и М1 соответственно. Известно, что А1А = 5, В1В = 7. Отрезок АВ с плос-тью не пересекается. Вычислите длину ММ1.

Через параллельные прямые АА1 и ММ1 можно провести единственную плос-ть β (теор. 2). Прямая АВ имеет с β две минимум две общие точки – А и М. Значит, она полностью лежит в β, и тогда точка В также принадлежит β. Аналогично можно показать, что в β находятся прямая А1В1 и точка ВВ1. Наконец, и прямая ВВ1 располагается в β (по двум точкам – В и В1). Тем самым мы можем утверждать, что АВВ1А1 – плоский четырехугольник, а именно трапеция, ведь ее основания АА1 и ВВ1 параллельны. ММ1 будет средней линией в этой трапеции (так как она проходит через одну середину и боковой стороны и параллельна основаниям, в 8 классе мы выясняли, что этого достаточно для того, чтобы считать ММ1 средней линией.).

Задание. Решите предыдущую задачу в случае, если отрезок АВ и плос-ть α пересекаются.

Решение. Аналогично предыдущей задаче мы можем показать, что все точки, фигурирующие в задаче, находятся в одной плос-ти β. Пусть АВ пересекается с α в некоторой точке С. Она будет общей для плос-тей α и β и потому будет находиться на их границе, то есть на прямой А1В1. Изобразим отдельно плос-ть β не в пространстве, а в плоском виде, без искажения:

Теперь нам надо просто решить планиметрическую задачу и найти ММ1. ∆АА1С,∆ВВ1С и ∆ММ1С подобны, ведь ∠ВСВ1 и ∠А1СА одинаковы как вертикальные углы, а

Для дальнейших рассуждений нам потребуется ещё один факт: М1 – это середина А1В1. Он вытекает из теоремы Фалеса. Действительно, на прямой АВ отмечены одинаковые отрезки АМ и МВ (ведь М – середина АВ). Через их концы проведены параллельные прямые, которые, по теореме Фалеса, на любой другой прямой также отсекут равные отрезки. То есть можно записать:

У подобных треугольников ∆∆АА1С и ∆ММ1С стороны пропорциональны, поэтому мы можем записать:

Задание. m и n – прямые, не находящиеся в одной плос-ти. Существует ли прямая такая прямая р, что р||m и р||m?

Решение. Предположим, что р существует. Тогда она будет одновременно параллельна и m,и n. По свойству транзитивности (теор. 4) получается, что прямые m и n должны быть также параллельны друг другу. Но это невозможно, ведь они находятся в различных плос-тях. Из этого противоречия вытекает, что прямая р на самом деле не может существовать.

Задание. Докажите, что прямая, параллельная каждой из двух пересекающихся плос-тей, обязательно будет параллельна и линии их пересечения.

Пусть есть прямая m, плос-ти α и β, и m||α, m||β. Также пусть α и β пересекаются по прямой n. Отметим на n произвольную точку K. Далее проведем через К прямую, параллельную m (используя теор. 1), и обозначим ее как р. Каково будет положение р относительно плос-тей α и β? Ни одну из этих плос-тей она пересекать не может, ведь тогда бы такую плос-ть пересекала бы и m (по теор. 3). Также р не может быть параллельна плос-тям, ведь она уже имеет с ними общую точку. Остается один вариант – она полностью находится и в α, и в β. Но это значит, что р – общая прямая для α и β, то есть она совпадает с n. В итоге получилось, что n||m, ч. т. д.

Видео:10 класс - Геометрия - Параллельные прямые в пространстве. Параллельность трёх прямыхСкачать

10 класс - Геометрия - Параллельные прямые в пространстве. Параллельность трёх прямых

Параллельность плоскостей

В стереометрии параллельными могут быть не только две прямые, но и две плоскости.

В реальной жизни параллельны друг другу пол и потолок в квартире, противоположные грани кубика, задняя и передняя стенка шкафа.

Существует признак параллельности плоскостей.

Докажем этот признак. Пусть есть плос-ти α и β, и в α находятся прямые m и n, пересекающиеся в точке К. В свою очередь в β находятся прямые α1 и β1, их общая точка – это К1. При этом m||m1 и n||n1:

Возможны два варианта: либо α и β пересекаются по некоторой прямой р, либо они параллельны. Рассмотрим вариант с пересечением. Заметим, что m и n параллельны плос-ти β (по теор. 5), ведь в β находятся параллельные им прямые. В таком случае и m, и n должны быть параллельны линии пересечения α и β, то есть прямой р (по теор. 7). Но тогда получится, что через точку К проведены сразу две прямые, параллельные р. Это невозможно (по теор. 1). Противоречие показывает, что на самом деле α и β не могут пересекаться, то есть они параллельны, ч. т. д.

Оказывается, что свойство транзитивности распространяется и на параллельные плос-ти:

Действительно, пусть есть три плос-ти α, β и γ, причем α||γ и β||γ. Надо продемонстрировать, что α||β. Для этого отметим на γ произвольную точку K и проведем через нее пересекающиеся прямые m и n. Далее отметим в α точку К1, через которую построим прямые m1 и n1, причем так, чтобы m||m1 и n||n1 (это возможно по теор. 1). Аналогично через точку К2, находящуюся на β, построим прямые m2 и n2 так, чтобы m||m2 и n||n2:

Легко заметить, что в силу свойства транзитивности (теор. 4) m1||m2, а n1||n2. Тогда получится, что в α и β есть пересекающиеся прямые, параллельные друг другу. Этого достаточно для того, чтобы считать α и β параллельными плос-тями (по теор. 9), ч. т. д.

Довольно очевиден следующий факт:

Докажем это. Возьмем плос-ть α и некоторую точку К, не находящуюся на α. Далее в α проведем какие-нибудь две пересекающиеся прямые m и n. Ясно, что мы можем через К провести такие прямые m1 и n1, что m1||m и n1||n (по теор. 1). Но любые две пересекающиеся прямые уже задают плос-ть. То есть мы можем провести плос-ть β через m1и n1. По признаку параллельности плос-тей (теор. 9) получаем, что α||β:

Осталось доказать, что через К нельзя провести ещё одну плос-ть γ, параллельную α. Действительно, если бы такая плос-ть γ существовала бы, то в силу свойства транзитивности (теор. 10) она была бы параллельна и β. Но у β и γ есть общая точка K, то есть они не параллельны. Значит, плос-ть γ не существует, ч. т. д.

Существует два свойства параллельных плос-тей. Сформулируем их и докажем:

В самом деле, если плос-ть γ пересекает плос-ти α и β, и α||β, то линии их пересечения не могут пересечься, ведь в противном случае у α и β будет общая точка. При этом линии пересечения находятся в одной плос-ти γ. Значит, они параллельны, ч. т. д.

Действительно, пусть параллельные плос-ти α и β пересекаются параллельными прямыми АD и ВС, причем А и В находятся на β, а С и D– на α. Тогда через AD и ВС можно провести плос-ть γ (по теор. 2), и прямые АВ и CD окажутся линиями пересечения:

Рассмотрим четырехугольник АВСD. АВ||CD(по теор. 11), а АD||ВС. Получается, что АВСD – это параллелограмм. Но у параллелограмма одинаковы противоположные стороны, поэтому AD = ВС, ч. т. д.

Рассмотрим несколько задач про параллельные плос-ти.

Задание. Докажите, что противоположные грани куба параллельны.

Решение. Построим куб и обозначим его вершины.

Покажем, что нижняя и верхняя грань (то есть плос-ти АЕН и ВFG) параллельны. Заметим, что в нижней грани располагаются пересекающиеся прямые АЕ и АD, а в верхней грани – также пересекающиеся прямые BF и ВС. При этом АЕ||BF (это противоположные стороны квадрата АЕFB) и AD||ВС (это уже стороны в квадрате АВСD). Из этого вытекает (по теор. 9), что АЕН||BFG, ч. т. д.

Задание. Даныплос-ти α и β, α||β. Верно ли, что любая прямая, находящаяся в α, будет параллельна β?

Решение. Плос-ти α и β не имеют ни одной общей точки. Значит, и любая прямая, располагающаяся в α, также не может иметь общих точек с β. А это как раз и значит, что прямая и плос-ть параллельны. То есть утверждение в условии задачи верно.

Задание. MNPQ и MNGF – параллелограммы, находящиеся в разных плос-тях. Докажите, что PQFG – это также параллелограмм.

Так как MNPQ и MNGF – параллелограммы, то MN||FG и MN||QP. По свойству транзитивности (теор. 4) получаем, что и QP||FG.

Также из свойств параллелограмма вытекает, что стороны MN и FG одинаковы, как и стороны MN и QP. Тогда должны быть одинаковы отрезки QP и FG:

Итак, в четырехугольнике PQFG стороны FG и PQ одновременно и параллельны, и равны. Тогда по одному из признаков параллелограмма PQFG оказывается именно этой фигурой, ч. т. д.

Задание. Отрезки А1А2, В1В2, С1С2 пересекаются в точке М, являющейся серединой каждого из этих отрезков. При этом отрезки не находятся в одной плос-ти. Верно ли, что плос-ти А1В1С1 и А2В2С2 параллельны?

Сравним ∆А1В1М и ∆А2В2М. ∠В1МА1 и ∠А2М одинаковы, ведь они вертикальные. По условию также одинаковы стороны, прилегающие кэти углам: В1М и В2М; А1М и А2М. Отсюда вытекает, что ∆А1В1М и ∆А2В2М равны.

Равенство ∆А1В1М и ∆А2В2М означает, что одинаковы углы ∠А1В1М и А2В2М. Но эти углы являются накрест лежащими для прямых А1В1 и А2В2, если В1В2 рассматривать как секущую. Из равенства накрест лежащих углов делаем вывод о том, что отрезки А1В1 и А2В2 параллельны.

Аналогичным образом, сравнивая ∆А1С1М и ∆А2С2М, приходим к выводу и о параллельности отрезков А1С1 и А2С2. В итоге получается, что в плос-тях А1В1С1 и А2В2С2 есть пары пересекающихся отрезков, которые соответственно параллельны: А1В1||А2В2 и А1С1||А2С2. Отсюда делаем вывод, что плос-ти А1В1С1 и А2В2С2 параллельны (по теор. 9).

Задание. На плос-ти α построен MPK. Через его вершины проведены параллельные друг другу прямые, которые пересекли другую плос-ть β в точках М1, Р1 и К1 соответственно. Известно, что α||β. Докажите, что ∆МРК и ∆М1Р1К1 равны.

Ясно, что точки М, К, М1, К1 находятся в единой плос-ти, ведь они располагаются на параллельных прямых. То есть МКК1М1 – это плоский четырехугольник. Попытаемся определить его тип.

Отрезки ММ1 и М1К1 параллельны по условию, но они также и одинаковы, согласно одному из свойств параллельных плос-тей (теор. 12). Тогда МКК1М1 – это параллелограмм по его признаку. Но в параллелограмме одинаковы противоположные стороны, поэтому отрезки МК и М1К1 равны.

Аналогично рассматривая параллелограммы МРР1М1 и РКК1Р1, мы приходим к выводу о равенстве отрезков МР и М1Р1, РК и Р1К1. Тогда ∆МРК и ∆М1Р1К1 оказываются равными по 3 одинаковым сторонам, ч. т. д.

Задание. Из точки H в пространстве проведены три прямые, пересекающие плос-ть α в точках M, Р, К, а другую плос-ть β в точках М1, Р1, К1. Известно, что α||β и точки М, Р, К образуют треугольник. Докажите, что ∆МРК и ∆М1Р1К1 подобны.

Ясно, что отрезки МК м М1К1 находятся в единой плос-ти, задаваемой пересекающимися отрезками НК и НМ. При этом прямые МК и М1К1 не могут пересечься (ведь они располагаются в параллельных плос-тях). Значит, МК||М1К1. Аналогично можно показать, что МР||М1Р1 и РК||Р1К1.

Теперь рассмотрим ∆НМК и ∆НМ1К1. У них есть общий ∠МНК, а ∠НМК и ∠НМ1К1 одинаковы как соответственные углы при параллельных МК и М1К1 и их секущей НМ1. Значит, ∆НМК и ∆НМ1К1 подобны. Выразим их коэффициент подобия:

Аналогично можно убедиться, что подобны ∆НМ1Р1 и ∆НМР; ∆НР1К1 и ∆НРК. Причем их коэффициенты подобия будут такие же, как у пары ∆∆НМК и ∆НМ1К1. Так, для ∆НМ1Р1 и ∆НМР можно написать

Получили, что все стороны ∆МРК и ∆М1Р1К1 пропорциональны друг другу. Согласно третьему признаку подобия мы можем заключить, что ∆МРК и ∆М1Р1К1 подобны, ч. т. д.

В ходе сегодняшнего урока мы расширили понятие параллельности, распространив ее на прямые в пространстве и плос-ти. Параллельность тех или иных геометрических объектов постоянно встречается как в реальной жизни, так и в задачах. Особенно важно запомнить изученные нами признаки параллельности (теор. 5 и 9).

🎥 Видео

Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.Скачать

Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.

10 класс, 5 урок, Параллельность трех прямыхСкачать

10 класс, 5 урок, Параллельность трех прямых

Видеоурок "Параллельные прямые в пространстве"Скачать

Видеоурок "Параллельные прямые в пространстве"

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Параллельные прямые — Признак Параллельности Прямых и Свойства УгловСкачать

Параллельные прямые — Признак Параллельности Прямых и Свойства Углов

Взаимное расположение прямых в пространстве. 10 класс.Скачать

Взаимное расположение прямых в пространстве. 10 класс.

Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)Скачать

Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)

СВОЙСТВА ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ. §15 геометрия 7 классСкачать

СВОЙСТВА ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ. §15 геометрия 7 класс

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)

Геометрия 10 класс (Урок№6 - Параллельность плоскостей.)Скачать

Геометрия 10 класс (Урок№6 - Параллельность плоскостей.)

Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать

Геометрия 7 класс (Урок№18 - Параллельные прямые.)

10 класс, 15 урок, Перпендикулярные прямые в пространствеСкачать

10 класс, 15 урок, Перпендикулярные прямые в пространстве

Параллельные прямые. 6 класс.Скачать

Параллельные прямые. 6 класс.

10 класс, 6 урок, Параллельность прямой и плоскостиСкачать

10 класс, 6 урок, Параллельность прямой и плоскости
Поделиться или сохранить к себе: