Свойства окружности и их доказательства

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

math4school.ru

Свойства окружности и их доказательства

Свойства окружности и их доказательства

Свойства окружности и их доказательства

Свойства окружности и их доказательства

Свойства окружности и их доказательства

Свойства окружности и их доказательства

Свойства окружности и их доказательства

Свойства окружности и их доказательства

Видео:Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать

Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)

Свойства и признаки окружности

Свойства окружности и их доказательства

Хорошо известно определение окружности как геометрического места точек, равноудаленных от некоторой фиксированной точки .

Свойства окружности и их доказательства

Однако определить окружность можно и многими другими способами. Приведем несколько примеров.

1. Окружность есть геометрическое место точек, сумма квадратов расстояний от которых до двух заданных точек постоянна и больше половины квадрата расстояния между этими точками.

2. Окружность есть геометрическое место точек, отношение расстояний от которых до двух данных точек А и В постоянно и не равно 1.

Свойства окружности и их доказательства

Такая окружность называется окружностью Аполлония точек А и В .

3. Окружность диаметра AB – это фигура, состоящая из точек A, B и всех точек плоскости, из которых отрезок AB виден под прямым углом.

Свойства окружности и их доказательства

Окружность обладает многими красивыми свойствами, доказательство которых не представляет труда. Сложнее определить, являются ли эти свойства также и признаками окружности, т.е. существуют ли другие кривые, обладающие ими. Перечислим сначала некоторые из свойств окружности, не присущие никаким другим кривым.

«Уникальные» свойства окружности

1. Два угла с вершинами на окружности, опирающиеся на одну и ту же дугу, равны.

Свойства окружности и их доказательства

2. Касательные к окружности, проведенные из одной точки, равны.

Свойства окружности и их доказательства

3. Из всех замкнутых кривых данной длины окружность ограничивает область максимальной площади.

4. Из всех замкнутых кривых, для которых длины всех хорд не превосходят заданной величины, окружность ограничивает область максимальной площади.

5. Любые две дуги окружности равной длины можно совместить.

Это свойство называется самоконгруэнтностью. На плоскости им, кроме окружности, обладает только прямая. Если кривая может не лежать в плоскости, оно задает также винтовую линию.

Свойства окружности и их доказательства

Однако замкнутых самоконгруэнтных кривых, отличных от окружности, не существует. Благодаря этому свойству меч, имеющий форму дуги окружности, можно вставлять и вынимать из ножен той же формы.

6. При любом расположении двух равных окружностей на плоскости они имеют не больше двух общих точек.

Свойства окружности и их доказательства

7. Любая прямая, проходящая через центр окружности, является ее осью симметрии.

Свойства окружности и их доказательства

Для некоторых из перечисленных свойств доказательства того, что они определяют окружность, а значит являются ее признаками, совсем элементарны. Для других, напротив, весьма сложны. Наиболее интересны доказательства признаков 2 и 6. (Попробуйте найти их самостоятельно; если не получится – смотрите ниже.)

А теперь приведем два красивых свойства окружности, которыми обладают и другие кривые.

«Не уникальные» свойства окружности

1. Окружность является кривой постоянной ширины.

Это значит, что если провести к окружности две параллельные касательные, то расстояние между ними не зависит от их направления.

Свойства окружности и их доказательства

Как ни странно, этим свойством обладают многие кривые, в том числе довольно сильно отличающиеся от окружности. Наиболее простая из них, так называемый треугольник Рело , изображена на следующем рисунке.

Свойства окружности и их доказательства

Он состоит из трех дуг окружностей, центры которых расположены в вершинах правильного треугольника, а радиусы равны его стороне. Если изготовить несколько катков, поперечные сечения которых являются кривыми постоянной ширины, то можно перевозить на них плоскую платформу, и она не будет перемещаться вверх и вниз.

Свойства окружности и их доказательства

Отметим также, что все кривые данной постоянной ширины имеют одну и ту же длину .

2. Любая прямая, которая делит пополам периметр окружности, делит пополам и площадь ограниченного ею круга.

Разумеется, помимо окружности этим свойством обладают любые кривые, имеющие центр симметрии. Гораздо интереснее то, что обладать им могут и не центрально-симметричные кривые, в том числе и выпуклые. Вот изображение одной из таких фигур:

Свойства окружности и их доказательства

Ее можно задать следующими уравнениями:

Доказательство признака 2

Пусть дана выпуклая гладкая кривая, касательные к которой из любой точки равны. Возьмем произвольную точку А вне кривой и проведем касательные АВ’ и АС’ . Докажем, что для всех точек А’ , лежащих на дуге В’С’ (одной и той же), углы В’А’С’ совпадают.

Проведем через А’ касательную к кривой и найдем точки В и С ее пересечения с АС’ и АВ’ .

Свойства окружности и их доказательства

По условию треугольники В’А’С’ и C’A’B’ равнобедренные, следовательно:

∠ C’A’B’ = π – ∠ BA’C’ – ∠ CA’B’ = ½ · (∠ CBA – ∠ ACB) = ½ · (π – ∠ BAC) .

Таким образом угол, под которым видна хорда В’С’ , не зависит от выбора точки на дуге. Для второй дуги доказательство аналогично. По первому признаку, из приведенных выше, кривая является окружностью.

Доказательство признака 6

Прежде всего, отметим, что в любую замкнутую кривую можно вписать правильный треугольник. Действительно, возьмем на кривой произвольную точку А и повернем кривую вокруг А на π /3. Точка пересечения старого и нового положения кривой, отличная от А будет второй вершиной треугольника.

Итак пусть правильный треугольник с центром О вписан в нашу кривую. Повернем ее вокруг О на угол 2 π /3. Старое и новое положение кривой пересекаются, по крайней мере, в трех точках (вершинах треугольника) и, значит, совпадают, т.е. О является центром симметрии 3 порядка. Рассмотрим теперь поворот кривой вокруг О на произвольный угол φ . Если старое и новое положение кривой не совпадают, то число точек их пересечения кратно 3 (в силу симметрии) и не равно 0 (иначе одна кривая лежала бы целиком внутри другой, что для конгруэнтных кривых невозможно). Следовательно, кривая переходит в себя при любом повороте вокруг О , т.е. является окружностью.

Источники: А. Заславский. Свойства и признаки окружности. («Квант», №6, 2001), Википедия.

Окружность

Окружностью называется фигура, состоящая из всех точек плоскости, находящихся от данной точки на данном расстоянии. Данная точка называется центром окружности, а отрезок, соединяющий центр с какой-либо точкой окружности, — радиусом окружности.

Часть плоскости, ограниченная окружностью называется кругом.

Круговым сектором или просто сектором называется часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Сегментом называется часть круга, ограниченная дугой и стягивающей ее хордой.

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Основные термины


Касательная

Прямая, имеющая с только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.

Свойства касательной


  1. Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

Хорда

Отрезок, соединяющий две точки окружности, называется ее хордой. Хорда, проходящая через центр окружности, называется диаметром.

Свойства хорд


  1. Диаметр (радиус), перпендикулярный к хорде, делит эту хорду и обе стягиваемые ею дуги пополам. Верна и обратная теорема: если диаметр (радиус) делит пополам хорду, то он перпендикулярен этой хорде.

Дуги, заключенные между параллельными хордами, равны.

Если две хорды окружности, AB и CD пересекаются в точке M , то произведение отрезков одной хорды равно произведению отрезков другой хорды: AM•MB = CM•MD.

Видео:Окружность. 7 класс.Скачать

Окружность. 7 класс.

Свойства окружности


  1. Прямая может не иметь с окружностью общих точек; иметь с окружностью одну общую точку ( касательная ); иметь с ней две общие точки ( секущая ).
  2. Через три точки, не лежащие на одной прямой, можно провести окружность, и притом только одну.
  3. Точка касания двух окружностей лежит на линии, соединяющей их центры.

Теорема о касательной и секущей

Если из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть: MC 2 = MA•MB .

Теорема о секущих

Если из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на её внешнюю часть равно произведению другой секущей на её внешнюю часть. MA•MB = MC•MD.

Видео:Доказательство того, что радиус перпендикулярен касательной | Окружность | ГеометрияСкачать

Доказательство того, что радиус перпендикулярен касательной | Окружность |  Геометрия

Углы в окружности

Центральным углом в окружности называется плоский угол с вершиной в ее центре.

Угол, вершина которого лежит на окружности, а стороны пересекают эту окружность, называется вписанным углом.

Любые две точки окружности делят ее на две части. Каждая из этих частей называется дугой окружности. Мерой дуги может служить мера соответствующего ей центрального угла.

Дуга называется полуокружностью, если отрезок, соединяющий её концы, является диаметром.

Свойства углов, связанных с окружностью


  1. Вписанный угол либо равен половине соответствующего ему центрального угла, либо дополняет половину этого угла до 180°.

Углы, вписанные в одну окружность и опирающиеся на одну и ту же дугу, равны.

Вписанный угол, опирающийся на диаметр, равен 90°.

Угол, образованный касательной к окружности и секущей, проведенной через точку касания, равен половине дуги, заключенной между его сторонами.

Видео:Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.Скачать

Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.

Длины и площади


  1. Длина окружности C радиуса R вычисляется по формуле:

Площадь S круга радиуса R вычисляется по формуле:

Длина дуги окружности L радиуса R с центральным углом ,измеренным в радианах, вычисляется по формуле:

Площадь S сектора радиуса R с центральным углом в радиан вычисляется по формуле:

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Вписанные и описанные окружности


Окружность и треугольник


  • центр вписанной окружности — точка пересечения биссектристреугольника, ее радиус r вычисляется по формуле:

где S — площадь треугольника, а — полупериметр;

центр описанной окружности — точка пересечения серединных перпендикуляров, ее радиус R вычисляется по формуле:

здесь a, b, c — стороны треугольника, — угол, лежащий против стороны a , S — площадь треугольника;

  • центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы;
  • центр описанной и вписанной окружностей треугольника совпадают только в том случае, когда этот треугольник — правильный.
  • Окружность и четырехугольники


    • около выпуклого четырехугольника можно описать окружность тогда и только тогда, когда сумма его внутренних противоположных углов равна 180°:

    в четырехугольник можно вписать окружность тогда и только тогда, когда у него равны суммы противоположных сторон:

    • около параллелограмма можно описать окружность тогда и только тогда, когда он является прямоугольником;
    • около трапеции можно описать окружность тогда и только тогда, когда эта трапеция — равнобедренная; центр окружности лежит на пересечении оси симметрии трапеции с серединным перпендикуляром к боковой стороне;
    • в параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом.

    Видео:Свойство диаметра окружности. 7 класс.Скачать

    Свойство диаметра окружности. 7 класс.

    Окружность. Основные теоремы

    Определения

    Центральный угол – это угол, вершина которого лежит в центре окружности.

    Вписанный угол – это угол, вершина которого лежит на окружности.

    Градусная мера дуги окружности – это градусная мера центрального угла, который на неё опирается.

    Теорема

    Градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.

    Доказательство

    Доказательство проведём в два этапа: сначала докажем справедливость утверждения для случая, когда одна из сторон вписанного угла содержит диаметр. Пусть точка (B) – вершина вписанного угла (ABC) и (BC) – диаметр окружности:

    Свойства окружности и их доказательства

    Треугольник (AOB) – равнобедренный, (AO = OB) , (angle AOC) – внешний, тогда (angle AOC = angle OAB + angle ABO = 2angle ABC) , откуда (angle ABC = 0,5cdotangle AOC = 0,5cdotbuildrelsmileover) .

    Теперь рассмотрим произвольный вписанный угол (ABC) . Проведём диаметр окружности (BD) из вершины вписанного угла. Возможны два случая:

    1) диаметр разрезал угол на два угла (angle ABD, angle CBD) (для каждого из которых теорема верна по доказанному выше, следовательно верна и для исходного угла, который является суммой этих двух и значит равен полусумме дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 1.

    2) диаметр не разрезал угол на два угла, тогда у нас появляется ещё два новых вписанных угла (angle ABD, angle CBD) , у которых сторона содержит диаметр, следовательно, для них теорема верна, тогда верна и для исходного угла (который равен разности этих двух углов, значит, равен полуразности дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 2.

    Свойства окружности и их доказательства

    Следствия

    1. Вписанные углы, опирающиеся на одну и ту же дугу, равны.

    2. Вписанный угол, опирающийся на полуокружность, прямой.

    3. Вписанный угол равен половине центрального угла, опирающегося на ту же дугу.

    Определения

    Существует три типа взаимного расположения прямой и окружности:

    1) прямая (a) пересекает окружность в двух точках. Такая прямая называется секущей. В этом случае расстояние (d) от центра окружности до прямой меньше радиуса (R) окружности (рис. 3).

    2) прямая (b) пересекает окружность в одной точке. Такая прямая называется касательной, а их общая точка (B) – точкой касания. В этом случае (d=R) (рис. 4).

    3) прямая (c) не имеет общих точек с окружностью (рис. 5).

    Свойства окружности и их доказательства

    Теорема

    1. Касательная к окружности перпендикулярна радиусу, проведенному в точку касания.

    2. Если прямая проходит через конец радиуса окружности и перпендикулярна этому радиусу, то она является касательной к окружности.

    Следствие

    Отрезки касательных, проведенных из одной точки к окружности, равны.

    Доказательство

    Проведем к окружности из точки (K) две касательные (KA) и (KB) :

    Свойства окружности и их доказательства

    Значит, (OAperp KA, OBperp KB) как радиусы. Прямоугольные треугольники (triangle KAO) и (triangle KBO) равны по катету и гипотенузе, следовательно, (KA=KB) .

    Следствие

    Центр окружности (O) лежит на биссектрисе угла (AKB) , образованного двумя касательными, проведенными из одной точки (K) .

    Теорема об угле между секущими

    Угол между двумя секущими, проведенными из одной точки, равен полуразности градусных мер большей и меньшей высекаемых ими дуг.

    Доказательство

    Пусть (M) – точка, из которой проведены две секущие как показано на рисунке:

    Свойства окружности и их доказательства

    Покажем, что (angle DMB = dfrac(buildrelsmileover — buildrelsmileover)) .

    (angle DAB) – внешний угол треугольника (MAD) , тогда (angle DAB = angle DMB + angle MDA) , откуда (angle DMB = angle DAB — angle MDA) , но углы (angle DAB) и (angle MDA) – вписанные, тогда (angle DMB = angle DAB — angle MDA = fracbuildrelsmileover — fracbuildrelsmileover = frac(buildrelsmileover — buildrelsmileover)) , что и требовалось доказать.

    Теорема об угле между пересекающимися хордами

    Угол между двумя пересекающимися хордами равен полусумме градусных мер высекаемых ими дуг: [angle CMD=dfrac12left(buildrelsmileover+buildrelsmileoverright)]

    Доказательство

    (angle BMA = angle CMD) как вертикальные.

    Свойства окружности и их доказательства

    Из треугольника (AMD) : (angle AMD = 180^circ — angle BDA — angle CAD = 180^circ — frac12buildrelsmileover — frac12buildrelsmileover) .

    Но (angle AMD = 180^circ — angle CMD) , откуда заключаем, что [angle CMD = frac12cdotbuildrelsmileover + frac12cdotbuildrelsmileover = frac12(buildrelsmileover + buildrelsmileover).]

    Теорема об угле между хордой и касательной

    Угол между касательной и хордой, проходящей через точку касания, равен половине градусной меры дуги, стягиваемой хордой.

    Доказательство

    Пусть прямая (a) касается окружности в точке (A) , (AB) – хорда этой окружности, (O) – её центр. Пусть прямая, содержащая (OB) , пересекает (a) в точке (M) . Докажем, что (angle BAM = frac12cdot buildrelsmileover) .

    Свойства окружности и их доказательства

    Обозначим (angle OAB = alpha) . Так как (OA) и (OB) – радиусы, то (OA = OB) и (angle OBA = angle OAB = alpha) . Таким образом, (buildrelsmileover = angle AOB = 180^circ — 2alpha = 2(90^circ — alpha)) .

    Так как (OA) – радиус, проведённый в точку касания, то (OAperp a) , то есть (angle OAM = 90^circ) , следовательно, (angle BAM = 90^circ — angle OAB = 90^circ — alpha = frac12cdotbuildrelsmileover) .

    Теорема о дугах, стягиваемых равными хордами

    Равные хорды стягивают равные дуги, меньшие полуокружности.

    И наоборот: равные дуги стягиваются равными хордами.

    Доказательство

    1) Пусть (AB=CD) . Докажем, что меньшие полуокружности дуги (buildrelsmileover=buildrelsmileover) .

    Свойства окружности и их доказательства

    (triangle AOB=triangle COD) по трем сторонам, следовательно, (angle AOB=angle COD) . Но т.к. (angle AOB, angle COD) — центральные углы, опирающиеся на дуги (buildrelsmileover, buildrelsmileover) соответственно, то (buildrelsmileover=buildrelsmileover) .

    2) Если (buildrelsmileover=buildrelsmileover) , то (triangle AOB=triangle COD) по двум сторонам (AO=BO=CO=DO) и углу между ними (angle AOB=angle COD) . Следовательно, и (AB=CD) .

    Теорема

    Если радиус делит хорду пополам, то он ей перпендикулярен.

    Верно и обратное: если радиус перпендикулярен хорде, то точкой пересечения он делит ее пополам.

    Свойства окружности и их доказательства

    Доказательство

    1) Пусть (AN=NB) . Докажем, что (OQperp AB) .

    Рассмотрим (triangle AOB) : он равнобедренный, т.к. (OA=OB) – радиусы окружности. Т.к. (ON) – медиана, проведенная к основанию, то она также является и высотой, следовательно, (ONperp AB) .

    2) Пусть (OQperp AB) . Докажем, что (AN=NB) .

    Аналогично (triangle AOB) – равнобедренный, (ON) – высота, следовательно, (ON) – медиана. Следовательно, (AN=NB) .

    Теорема о произведении отрезков хорд

    Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

    Доказательство

    Пусть хорды (AB) и (CD) пересекаются в точке (E) .

    Свойства окружности и их доказательства

    Рассмотрим треугольники (ADE) и (CBE) . В этих треугольниках углы (1) и (2) равны, так как они вписанные и опираются на одну и ту же дугу (BD) , а углы (3) и (4) равны как вертикальные. Треугольники (ADE) и (CBE) подобны (по первому признаку подобия треугольников).

    Тогда (dfrac = dfrac) , откуда (AEcdot BE = CEcdot DE) .

    Теорема о касательной и секущей

    Квадрат отрезка касательной равен произведению секущей на ее внешнюю часть.

    Доказательство

    Пусть касательная проходит через точку (M) и касается окружности в точке (A) . Пусть секущая проходит через точку (M) и пересекает окружность в точках (B) и (C) так что (MB . Покажем, что (MBcdot MC = MA^2) .

    Свойства окружности и их доказательства

    Рассмотрим треугольники (MBA) и (MCA) : (angle M) – общий, (angle BCA = 0,5cdotbuildrelsmileover) . По теореме об угле между касательной и секущей, (angle BAM = 0,5cdotbuildrelsmileover = angle BCA) . Таким образом, треугольники (MBA) и (MCA) подобны по двум углам.

    Из подобия треугольников (MBA) и (MCA) имеем: (dfrac = dfrac) , что равносильно (MBcdot MC = MA^2) .

    Следствие

    Произведение секущей, проведённой из точки (O) , на её внешнюю часть не зависит от выбора секущей, проведённой из точки (O) :

    💥 Видео

    Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

    Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

    Окружность, диаметр, хорда геометрия 7 классСкачать

    Окружность, диаметр, хорда геометрия 7 класс

    Шаталов за одну минуту доказывает теорему, на которую традиционно выделяется 45 минут урока!Скачать

    Шаталов за одну минуту доказывает теорему, на которую традиционно выделяется 45 минут урока!

    Секретная теорема из учебника геометрииСкачать

    Секретная теорема из учебника геометрии

    7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

    7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

    Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

    Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

    Длина окружности. Площадь круга. 6 класс.Скачать

    Длина окружности. Площадь круга. 6 класс.

    Основные свойства окружности. Формулы связанные с окружностьюСкачать

    Основные свойства окружности. Формулы связанные с окружностью

    Пара фактов про окружность | Ботай со мной #067 | Борис Трушин |Скачать

    Пара фактов про окружность | Ботай со мной #067 | Борис Трушин |

    8 класс, 32 урок, Касательная к окружностиСкачать

    8 класс, 32 урок, Касательная к окружности

    Отрезки касательных из одной точки до точек касания окружности равны | Окружность | ГеометрияСкачать

    Отрезки касательных из одной точки до точек касания окружности равны | Окружность |  Геометрия

    Свойства хорд окружностиСкачать

    Свойства хорд окружности
    Поделиться или сохранить к себе: