Свойства хорд окружности 9 класс

Отрезки и прямые, связанные с окружностью. Теорема о бабочке
Свойства хорд окружности 9 классОтрезки и прямые, связанные с окружностью
Свойства хорд окружности 9 классСвойства хорд и дуг окружности
Свойства хорд окружности 9 классТеоремы о длинах хорд, касательных и секущих
Свойства хорд окружности 9 классДоказательства теорем о длинах хорд, касательных и секущих
Свойства хорд окружности 9 классТеорема о бабочке

Свойства хорд окружности 9 класс

Видео:Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать

Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)

Отрезки и прямые, связанные с окружностью

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Конечная часть плоскости, ограниченная окружностью

Отрезок, соединяющий центр окружности с любой точкой окружности

Отрезок, соединяющий две любые точки окружности

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

Прямая, пересекающая окружность в двух точках

ФигураРисунокОпределение и свойства
ОкружностьСвойства хорд окружности 9 класс
КругСвойства хорд окружности 9 класс
РадиусСвойства хорд окружности 9 класс
ХордаСвойства хорд окружности 9 класс
ДиаметрСвойства хорд окружности 9 класс
КасательнаяСвойства хорд окружности 9 класс
СекущаяСвойства хорд окружности 9 класс
Окружность
Свойства хорд окружности 9 класс

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

КругСвойства хорд окружности 9 класс

Конечная часть плоскости, ограниченная окружностью

РадиусСвойства хорд окружности 9 класс

Отрезок, соединяющий центр окружности с любой точкой окружности

ХордаСвойства хорд окружности 9 класс

Отрезок, соединяющий две любые точки окружности

ДиаметрСвойства хорд окружности 9 класс

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

КасательнаяСвойства хорд окружности 9 класс

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

СекущаяСвойства хорд окружности 9 класс

Прямая, пересекающая окружность в двух точках

Видео:Свойство пересекающихся хорд окружности. Геометрия 8-9 классСкачать

Свойство пересекающихся хорд окружности. Геометрия 8-9 класс

Свойства хорд и дуг окружности

ФигураРисунокСвойство
Диаметр, перпендикулярный к хордеСвойства хорд окружности 9 классДиаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.
Диаметр, проходящий через середину хордыДиаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.
Равные хордыСвойства хорд окружности 9 классЕсли хорды равны, то они находятся на одном и том же расстоянии от центра окружности.
Хорды, равноудалённые от центра окружностиЕсли хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.
Две хорды разной длиныСвойства хорд окружности 9 классБольшая из двух хорд расположена ближе к центру окружности.
Равные дугиСвойства хорд окружности 9 классУ равных дуг равны и хорды.
Параллельные хордыСвойства хорд окружности 9 классДуги, заключённые между параллельными хордами, равны.
Диаметр, перпендикулярный к хорде
Свойства хорд окружности 9 класс

Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.

Диаметр, проходящий через середину хордыСвойства хорд окружности 9 класс

Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.

Равные хордыСвойства хорд окружности 9 класс

Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности.

Хорды, равноудалённые от центра окружностиСвойства хорд окружности 9 класс

Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.

Две хорды разной длиныСвойства хорд окружности 9 класс

Большая из двух хорд расположена ближе к центру окружности.

Равные дугиСвойства хорд окружности 9 класс

У равных дуг равны и хорды.

Параллельные хордыСвойства хорд окружности 9 класс

Дуги, заключённые между параллельными хордами, равны.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Теоремы о длинах хорд, касательных и секущих

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Свойства хорд окружности 9 класс

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Свойства хорд окружности 9 класс

Свойства хорд окружности 9 класс

ФигураРисунокТеорема
Пересекающиеся хордыСвойства хорд окружности 9 класс
Касательные, проведённые к окружности из одной точкиСвойства хорд окружности 9 класс
Касательная и секущая, проведённые к окружности из одной точкиСвойства хорд окружности 9 класс
Секущие, проведённые из одной точки вне кругаСвойства хорд окружности 9 класс

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Свойства хорд окружности 9 класс

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Свойства хорд окружности 9 класс

Свойства хорд окружности 9 класс

Пересекающиеся хорды
Свойства хорд окружности 9 класс
Касательные, проведённые к окружности из одной точки
Свойства хорд окружности 9 класс
Касательная и секущая, проведённые к окружности из одной точки
Свойства хорд окружности 9 класс
Секущие, проведённые из одной точки вне круга
Свойства хорд окружности 9 класс
Пересекающиеся хорды
Свойства хорд окружности 9 класс

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Свойства хорд окружности 9 класс

Касательные, проведённые к окружности из одной точки

Свойства хорд окружности 9 класс

Свойства хорд окружности 9 класс

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Касательная и секущая, проведённые к окружности из одной точки

Свойства хорд окружности 9 класс

Свойства хорд окружности 9 класс

Свойства хорд окружности 9 класс

Секущие, проведённые из одной точки вне круга

Свойства хорд окружности 9 класс

Свойства хорд окружности 9 класс

Свойства хорд окружности 9 класс

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Доказательства теорем о длинах хорд, касательных и секущих

Теорема 1 . Предположим, что хорды окружности AB и CD пересекаются в точке E (рис.1).

Свойства хорд окружности 9 класс

Свойства хорд окружности 9 класс

Тогда справедливо равенство

Свойства хорд окружности 9 класс

Доказательство . Заметим, что углы BCD и BAD равны как вписанные углы, опирающиеся на одну и ту же дугу. Углы BEC и AED равны как вертикальные. Поэтому треугольники BEC и AED подобны. Следовательно, справедливо равенство

Свойства хорд окружности 9 класс

откуда и вытекает требуемое утверждение.

Теорема 2 . Предположим, что из точки A , лежащей вне круга, к окружности проведены касательная AB и секущая AD (рис.2).

Свойства хорд окружности 9 класс

Свойства хорд окружности 9 класс

Точка B – точка касания с окружностью, точка C – вторая точка пересечения прямой AD с окружностью. Тогда справедливо равенство

Свойства хорд окружности 9 класс

Доказательство . Заметим, что угол ABC образован касательной AB и хордой BC , проходящей через точку касания B . Поэтому величина угла ABC равна половине угловой величины дуги BC . Поскольку угол BDC является вписанным углом, то величина угла BDC также равна половине угловой величины дуги BC . Следовательно, треугольники ABC и ABD подобны (угол A является общим, углы ABC и BDA равны). Поэтому справедливо равенство

Свойства хорд окружности 9 класс

откуда и вытекает требуемое утверждение.

Теорема 3 . Предположим, что из точки A , лежащей вне круга, к окружности проведены секущие AD и AF (рис.3).

Свойства хорд окружности 9 класс

Свойства хорд окружности 9 класс

Точки C и E – вторые точки пересечения секущих с окружностью. Тогда справедливо равенство

Свойства хорд окружности 9 класс

Доказательство . Проведём из точки A касательную AB к окружности (рис. 4).

Свойства хорд окружности 9 класс

Свойства хорд окружности 9 класс

Точка B – точка касания. В силу теоремы 2 справедливы равенства

Свойства хорд окружности 9 класс

откуда и вытекает требуемое утверждение.

Видео:Секущая и касательная. 9 класс.Скачать

Секущая и касательная. 9 класс.

Теорема о бабочке

Теорема о бабочке . Через середину G хорды EF некоторой окружности проведены две произвольные хорды AB и CD этой окружности. Точки K и L – точки пересечения хорд AC и BD с хордой EF соответственно (рис.5). Тогда отрезки GK и GL равны.

Свойства хорд окружности 9 класс

Свойства хорд окружности 9 класс

Доказательство . Существует много доказательств этой теоремы. Изложим доказательство, основанное на теореме синусов, которое, на наш взгляд, является наиболее наглядным. Для этого заметим сначала, что вписанные углы A и D равны, поскольку опираются на одну и ту же дугу. По той же причине равны и вписанные углы C и B . Теперь введём следующие обозначения:

Свойства хорд окружности 9 класс

Свойства хорд окружности 9 класс

Воспользовавшись теоремой синусов, применённой к треугольнику CKG , получим

Свойства хорд окружности 9 класс

Свойства хорд окружности 9 класс

Воспользовавшись теоремой синусов, применённой к треугольнику AKG , получим

Свойства хорд окружности 9 класс

Свойства хорд окружности 9 класс

Воспользовавшись теоремой 1, получим

Свойства хорд окружности 9 класс

Свойства хорд окружности 9 класс

Воспользовавшись равенствами (1) и (2), получим

Свойства хорд окружности 9 класс

Свойства хорд окружности 9 класс

Свойства хорд окружности 9 класс

Свойства хорд окружности 9 класс

Свойства хорд окружности 9 класс

Проводя совершенно аналогичные рассуждения для треугольников BGL и DGL , получим равенство

Свойства хорд окружности 9 класс

откуда вытекает равенство

что и завершает доказательство теоремы о бабочке.

Видео:Пропорциональные отрезки круга. 9 класс.Скачать

Пропорциональные отрезки круга. 9 класс.

Хорда окружности — определение, свойства, теорема

Свойства хорд окружности 9 класс

Видео:Свойства хорд окружностиСкачать

Свойства хорд окружности

Хорда в геометрии

Каждая хорда имеет свою длину. Ее можно определить с помощью теоремы синусов. То есть длина хорды окружности зависит от радиуса и вписанного угла, опирающегося на данный отрезок. Формула для определения длины выглядит следующим образом: B*A = R*2 * sin α, где R — радиус, AB — это хорда, α — вписанный угол. Также длину можно вычислить через другую формулу, которая выводится из теоремы Пифагора: B*A = R*2 * sin α/2 , где AB — это хорда, α — центральный угол, который опирается на данный отрезок, R — радиус.

Свойства хорд окружности 9 класс

Если рассматривать хорды в совокупности с дугами, то получаются новые объекты. Например, в кругу можно дополнительно выделить две области: сектор и сегмент. Сектор образуется с помощью двух радиусов и дуги. Для сектора можно вычислить площадь, а если он является частью конуса, то еще и высоту. Сегмент, в свою очередь, это область, состоящая из отрезка и дуги.

Для того чтобы проверить правильность своего решения в нахождении длины, можно обратиться к онлайн-калькуляторам в интернете. Они представлены в виде таблицы, в которую нужно вписать только известные параметры, а программа сама выполнит необходимые вычисления.

Это очень полезная функция, так как не приходится вспоминать различные уравнения и производить сложные расчеты.

Свойства отрезка окружности

Для решения геометрических задач необходимо знать свойства хорды окружности. Для нее характерны такие показатели:

Свойства хорд окружности 9 класс

  1. Это отрезок с наибольшей длиною в окружности это диаметр. Он обязательно будет проходить через центр круга.
  2. Если есть две равные дуги, то их отрезки, которые их стягивают, будут равны.
  3. Хорда, которая перпендикулярна диаметру, будет делить этот отрезок и его дугу на две одинаковые части (справедливо и обратное утверждение).
  4. Самый маленький отрезок в окружности это точка.
  5. Хорды будут равны, если они находятся на одном расстоянии от центра окружности (справедливо и обратное утверждение).
  6. При сравнении двух отрезков в кругу большая из них окажется ближе к центру окружности.
  7. Дуги, которые находятся между двумя параллельными хордами, равны.

Помимо основных свойств отрезка круга, нужно выделить еще одно важное свойство. Оно отражено в теореме о пересекающихся хордах.

Ключевая теорема

Свойства хорд окружности 9 класс

Имеется круг с центром в точке O и радиусом R. Для теоремы нужно в круг вписать две прямые, пускай это будут хорды BA и CD, которые пересекаются в точке E. Перед тем как перейти к доказательству, нужно сформулировать определение теоремы. Оно звучит следующим образом: если хорды пересекаются в некоторой точке, которая делит их на отрезки, то произведения длин отрезков первой хорды равно произведению длин отрезков второй хорды. Для наглядности можно записать эту формулу: AE*BE= EC*ED. Теперь можно перейти к доказательству.

Свойства хорд окружности 9 класс

Проведем отрезки CB и AD. Рассмотрим треугольники CEB и DEA. Известно, что углы CEB и DEA равны как вертикальные углы, DCB и BAD равны за следствием с теоремы про вписанные углы, которые опираются на одну и ту же дугу. Треугольники CEB и DEA подобны (первый признак подобия треугольников). Тогда выходит пропорциональное соотношение BE/ED = EC/EA. Отсюда AE*BE= EC*ED.

Помимо взаимодействия с внутренними элементами окружности, для хорды еще существуют свойства при пересечении с секущейся и касательными прямыми. Для этого необходимо рассмотреть понятия касательная и секущая и определить главные закономерности.

Касательная — это прямая, которая соприкасается с кругом только в одной точке. И если к ней провести радиус круга, то они будут перпендикулярны. В свою очередь, секущая — это прямая, которая проходит через две точки круга. При взаимодействии этих прямых можно заметить некоторые закономерности.

Видео:Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.Скачать

Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.

Касательная и секущая

Существует теорема о двух касательных, которые проведены с одной точки. В ней говорится о том, что если есть две прямые OK и ON, которые проведены с точки O, будут равны между собой. Перейдем к доказательству теоремы.

Свойства хорд окружности 9 класс

Рассмотрим два прямоугольных треугольника AFD и AED. Поскольку катеты DF и DE будут равны как радиусы круга, а AD — общая гипотенуза, то между собой данные треугольники будут равны за признаком равенства треугольников, с чего выходит, что AF = AE.

Если возникает ситуация, когда пересекаются касательная и секущая, то в этом случае также можно вывести закономерность. Рассмотрим теорему и докажем, что AB 2 = AD*AC.

Свойства хорд окружности 9 класс

Предположим у нас есть касательная AB и секущая AD, которые берут начало с одной точки A. Обратим внимание на угол ABC, он спирается на дугу BC, значит, за свойством значение его угла будет равно половине градусной меры дуги, на которую он опирается. За свойством вписанного угла, величина угла BDC также будет равно половине дуги BC. Таким образом, треугольники ABD и ABC будут подобны за признаком подобия треугольников, так как угол A — общий, а угол ABC равен углу BDC. Опираясь на теорию, получаем соотношение: AB/CA = DA/AB, переписав это соотношение в правильную форму, получаем равенство AB 2 = AD*AC, что и требовалось доказать.

Как есть теорема про две касательные, так есть и теорема про две секущие. Она так же просто формулируется, как и остальные теоремы. Поэтому рассмотрим доказательство и убедимся, что AB*AC = AE*AD.

Свойства хорд окружности 9 класс

Проведем две прямые через точку A, получим две секущие AC и AE. Дорисуем две хорды, соединяя точки C и B, B и D. Получим два треугольника ABD И CEA. Обратим внимание на вписанный четырехугольник BDCE. За свойством вписанных четырехугольников узнаем, что значения углов BDE и ECB в сумме будут давать 180 градусов. И сумма значений углов BDA и BDE также равна 180, за свойством смежных углов.

Отсюда можно получить два уравнения, из которых будет выведено, что углы ECB и BDA будут равны: BDA + BDE = 180; BDE + ECB = 180. Все это записываем в систему уравнений, отнимаем первое от второго, получаем результат, что ECB = BDA.

Если вернутся к треугольникам ABD И CEA, то теперь можно сказать, что они подобны, так как угол А — общий, а углы ECA и BDA — равны. Теперь можно записать соотношение сторон: AB/AE = AD/AC. В итоге получим, что AB*AC = AE*AD.

Видео:Свойства хорд, касательных, секущих окружности I Для решения задач из ОГЭ И ЕГЭ I Часть 1Скачать

Свойства хорд, касательных, секущих окружности I Для решения задач из ОГЭ И ЕГЭ I Часть 1

Решение задач

При решении задач, связанных с окружностью, хорда часто выступает главным элементом, опираясь на который можно найти остальные неизвестные элементы. В каждой второй задаче задаются два параметра, чтобы найти третий неизвестный. В задачах, которые, связанные с кругом, хорда — это обязательный элемент:

Свойства хорд окружности 9 класс

  • Найти высоту детали, которая была получена путем сгибания заготовки в дугу. В начальных данных обязательно присутствует хорда и длина дуги.
  • Дана развертка, нужно найти длину части кольца. Задается хорда и диаметр.
  • Также можно находить длину хорды. В случае если заданы уравнения прямой и окружности, которые пересекаются.

Для решения задач с отрезком в окружности удобно использовать схематические рисунки. Их рисуют с помощью линейки и циркуля, и принцип решения задач становится более наглядным.

Видео:Угол между хордой и касательной. 9 класс.Скачать

Угол между хордой и касательной. 9 класс.

Геометрия. Урок 5. Окружность

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Свойства хорд окружности 9 класс

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Определение окружности
  • Отрезки в окружности

Видео:Теорема об отрезках хорд и секущихСкачать

Теорема об отрезках хорд и секущих

Определение окружности

Окружность – геометрическое место точек, равноудаленных от данной точки.

Эта точка называется центром окружности .

Свойства хорд окружности 9 класс

Видео:Свойства касательной, секущей и пересекающихся хорд окружностиСкачать

Свойства касательной, секущей и пересекающихся хорд  окружности

Отрезки в окружности

Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.

Хорда a – отрезок, соединяющий две точки на окружности.

Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).

O A – радиус, D E – хорда, B C – диаметр.

Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.

Касательная к окружности – прямая, имеющая с окружностью одну общую точку.

Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.

Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).

Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.

Видео:Свойство хорд, пересекающихся внутри окружностиСкачать

Свойство хорд, пересекающихся внутри окружности

Дуга в окружности

Часть окружности, заключенная между двумя точками, называется дугой окружности .

Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .

Теорема 4:
Равные хорды стягивают равные дуги.

Если A B = C D , то ∪ A B = ∪ C D

Видео:Угол между хордой и касательнойСкачать

Угол между хордой и касательной

Углы в окружности

В окружности существует два типа углов: центральные и вписанные.

Центральный угол – угол, вершина которого лежит в центре окружности.

∠ A O B – центральный.

Центральный угол равен градусной мере дуги, на которую он опирается . ∪ A B = ∠ A O B = α

Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.

Градусная мара всей окружности равна 360 ° .

Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.

∠ A C B – вписанный.

Вписанный угол равен половине градусной меры дуги, на которую он опирается . ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α

Теорема 5:
Вписанные углы, опирающиеся на одну и ту же дугу, равны .

∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2

Теорема 6:
Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .

∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °

Видео:Длина окружности. 9 класс.Скачать

Длина окружности. 9 класс.

Длина окружности, длина дуги

Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ). Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром. Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .

Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .

Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.

Длина окружности находится по формуле:

Длина дуги окружности , на которую опирается центральный угол α равна:

l α = π R 180 ∘ ⋅ α

Видео:Окружность, касательная, секущая и хорда | МатематикаСкачать

Окружность, касательная, секущая и хорда | Математика

Площадь круга и его частей

Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.

Круг – часть пространства, которая находится внутри окружности.

Иными словами, окружность – это граница, а круг – это то, что внутри.

Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.

Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.

Площадь круга находится по формуле: S = π R 2

Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Примеры сектора в реальной жизни: кусок пиццы, веер.

Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α

Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.

Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.

Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.

S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α

Видео:9 класс. Геометрия. Теорема о пропорциональности отрезков хорд и в секущих окружности. 22.05.2020.Скачать

9 класс. Геометрия. Теорема о пропорциональности отрезков хорд и в секущих окружности. 22.05.2020.

Теорема синусов

Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.

Видео:Пропорциональность отрезков хорд, касательных и секущих. Геометрия 9 классСкачать

Пропорциональность отрезков хорд, касательных и секущих. Геометрия 9 класс

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с окружностями.

🎥 Видео

Теорема о секущей и касательной, о секущих, о пересекающихся хордах | Теоремы об окружностях - 1Скачать

Теорема о секущей и касательной, о секущих, о пересекающихся хордах | Теоремы об окружностях - 1

Свойства Касательных, Хорд, СекущихСкачать

Свойства Касательных, Хорд, Секущих
Поделиться или сохранить к себе: