Отношение высоты к основанию треугольника

Свойства высот треугольника

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

свойства высоты в треугольнике

Свойство 1
Отношение высоты к основанию треугольника

Высоты треугольника или их продолжения пересекаются в одной точке — ортоцентре треугольника.

Свойство 2
Отношение высоты к основанию треугольника

Если AD, BE, CF — высоты треугольника ABC, O — точка пересечения этих высот или их продолжений, то:

Отношение высоты к основанию треугольника

Свойство 3
Отношение высоты к основанию треугольника

Высота, опущенная на гипотенузу прямоугольного треугольника, делит его на два треугольника, подобных между собой и подобных исходному треугольнику:

Отношение высоты к основанию треугольника

Высота на сторону c вычисляется по формулам:

Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Определение и свойства высоты треугольника

В данной публикации мы рассмотрим определение высоты треугольника, продемонстрируем, как она выглядит в зависимости от вида треугольника, а также перечислим ее основные свойства.

Видео:8 класс, 21 урок, Отношение площадей подобных треугольниковСкачать

8 класс, 21 урок, Отношение площадей подобных треугольников

Определение высоты треугольника

Высота треугольника – это перпендикуляр, который опущен из вершины фигуры на противоположную сторону.

Основание высоты – точка на противоположной стороне треугольника, которую пересекает высота (или точка пересечения их продолжений).

Обычно высота обозначается буквой h (иногда как ha – это означает, что она проведена к стороне a).

Видео:Высота в прямоугольном треугольнике. 8 класс.Скачать

Высота в прямоугольном треугольнике. 8 класс.

Высота в разных видах треугольников

В зависимости от вида фигуры высота может:

  • проходить внутри треугольника (в остроугольном △);
    Отношение высоты к основанию треугольника
  • проходить за рамками треугольника (в тупоугольном △);
    Отношение высоты к основанию треугольника
  • являться одним из катетов (в прямоугольном △), за исключением высоты, проведенной к гипотенузе.
    Отношение высоты к основанию треугольника

Видео:7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника

Свойства высоты треугольника

Свойство 1

Все три высоты в треугольнике (или их продолжения) пересекаются в одной точке, которая называется ортоцентром (точка O на чертежах ниже).

  • в остроугольном треугольнике;
    Отношение высоты к основанию треугольника
  • в тупоугольном треугольнике;
    Отношение высоты к основанию треугольника
  • в прямоугольном треугольнике.
    Отношение высоты к основанию треугольника
    Вершина A является, в т.ч., точкой пересечения высот.

Свойство 2

При пересечении двух высот в треугольнике, образуются следующие подобные треугольники:

  • ABE∼△CBF: по двум углам (∠ABC – общий, ∠AEB и ∠CFB являются прямыми).
    Отношение высоты к основанию треугольника
  • AFG∼△CEG: по двум углам (∠AFG и ∠CEG – прямые, ∠AGF и ∠CGE равны как вертикальные углы).
  • ABC∼△BEF: по трем равным углам (∠ABC = ∠EBF, ∠ACB =BFE,CAB =BEF).
    Отношение высоты к основанию треугольника
    Примечание: доказательство подобия последней пары треугольников достаточно длинное и не является целью данной статьи, поэтому подробно останавливаться на нем будем.

Свойство 3

Точка пересечения высот в остроугольном треугольнике является центром окружности, вписанной в его ортотреугольник.

Отношение высоты к основанию треугольника

Ортотреугольник – треугольник, вершинами которого являются основания высот △ABC. В нашем случае – это △DEF.

Свойство 4

Точки, которые симметричны ортоцентру треугольника относительно его сторон, лежат на окружности, описанной вокруг этого треугольника.

Отношение высоты к основанию треугольника

Примечание: формулы для нахождения высоты треугольника подробно рассмотрены в нашей публикации – “Как найти высоту в треугольнике abc”.

Видео:КАК НАЙТИ ВЫСОТУ ТРЕУГОЛЬНИКА? ЕГЭ и ОГЭ #shorts #егэ #огэ #математика #профильныйегэ #треугольникСкачать

КАК НАЙТИ ВЫСОТУ ТРЕУГОЛЬНИКА? ЕГЭ и ОГЭ #shorts #егэ #огэ #математика #профильныйегэ #треугольник

Высота треугольника. Задача Фаньяно

Отношение высоты к основанию треугольникаВысота треугольника. Свойство высоты прямоугольного треугольника
Отношение высоты к основанию треугольникаРасположение высот у треугольников различных типов
Отношение высоты к основанию треугольникаОртоцентр треугольника
Отношение высоты к основанию треугольникаРасположение ортоцентров у треугольников различных типов
Отношение высоты к основанию треугольникаОртоцентрический треугольник
Отношение высоты к основанию треугольникаЗадача Фаньяно

Видео:Площади треугольников с равным углом.Скачать

Площади треугольников с равным углом.

Высота треугольника. Свойство высоты прямоугольного треугольника

Определение 1 . Высотой треугольника называют перпендикуляр, опущенный из вершины треугольника на прямую, содержащую противолежащую сторону треугольника. Основанием высоты называют основание этого перпендикуляра (рис.1).

Отношение высоты к основанию треугольника

На рисунке 1 изображена высота BD , проведённая из вершины B треугольника ABC . Точка D – основание высоты.

Для высоты прямоугольного треугольника, проведённой из вершины прямого угла, справедливо следующее утверждение.

Утверждение . Длина высоты прямоугольного треугольника, опущенной на гипотенузу, является средним геометрическим между длинами отрезков, на которые основание высоты делит гипотенузу (рис.2).

Отношение высоты к основанию треугольника

Доказательство . Углы треугольников BCD и ACD (рис.2) удовлетворяют соотношениям

Отношение высоты к основанию треугольника

Отношение высоты к основанию треугольника

Отношение высоты к основанию треугольника

Отношение высоты к основанию треугольника

Таким образом, длина отрезка CD является средним геометрическим между длинами отрезков BD и AD , что и требовалось доказать.

Высоты можно провести из каждой вершины треугольника, однако у треугольников различных типов высоты располагаются по-разному, как показано в следующей таблице.

Видео:Площадь треугольника. Как найти площадь треугольника?Скачать

Площадь треугольника. Как найти площадь треугольника?

Расположение высот у треугольников различных типов

ФигураРисунокОписание
Остроугольный треугольникОтношение высоты к основанию треугольникаВсе высоты остроугольного треугольника лежат внутри треугольника.
Отношение высоты к основанию треугольника
Отношение высоты к основанию треугольника
Прямоугольный треугольникОтношение высоты к основанию треугольникаВысоты прямоугольного треугольника, проведённые из вершин острых углов, совпадают с катетами треугольника. Высота, проведённая из вершины прямого угла, лежит внутри треугольника
Отношение высоты к основанию треугольника
Отношение высоты к основанию треугольника
Тупоугольный треугольникОтношение высоты к основанию треугольникаВысоты тупоугольного треугольника, проведённые из вершин острых углов, лежат вне треугольника. Высота, проведённая из вершины тупого угла, лежит внутри треугольника
Отношение высоты к основанию треугольника
Отношение высоты к основанию треугольника
Остроугольный треугольник
Отношение высоты к основанию треугольникаОтношение высоты к основанию треугольникаОтношение высоты к основанию треугольника
Все высоты остроугольного треугольника лежат внутри треугольника.
Прямоугольный треугольник
Отношение высоты к основанию треугольникаОтношение высоты к основанию треугольникаОтношение высоты к основанию треугольника
Высоты прямоугольного треугольника, проведённые из вершин острых углов, совпадают с катетами треугольника. Высота, проведённая из вершины прямого угла, лежит внутри треугольника
Тупоугольный треугольник
Отношение высоты к основанию треугольникаОтношение высоты к основанию треугольникаОтношение высоты к основанию треугольника
Высоты тупоугольного треугольника, проведённые из вершин острых углов, лежат вне треугольника. Высота, проведённая из вершины тупого угла, лежит внутри треугольника

Отношение высоты к основанию треугольника

Отношение высоты к основанию треугольника

Отношение высоты к основанию треугольника

Все высоты остроугольного треугольника лежат внутри треугольника.

Отношение высоты к основанию треугольника

Отношение высоты к основанию треугольника

Отношение высоты к основанию треугольника

Высоты прямоугольного треугольника, проведённые из вершин острых углов, совпадают с катетами треугольника. Высота, проведённая из вершины прямого угла, лежит внутри треугольника

Отношение высоты к основанию треугольника

Отношение высоты к основанию треугольника

Отношение высоты к основанию треугольника

Отношение высоты к основанию треугольника

Отношение высоты к основанию треугольника

Отношение высоты к основанию треугольника

Высоты тупоугольного треугольника, проведённые из вершин острых углов, лежат вне треугольника. Высота, проведённая из вершины тупого угла, лежит внутри треугольника

Видео:8 класс, 37 урок, Теорема о пересечении высот треугольникаСкачать

8 класс, 37 урок, Теорема о пересечении высот треугольника

Ортоцентр треугольника

Теорема 1 . Высоты треугольника (или их продолжения) пересекаются в одной точке.

Доказательство . Рассмотрим произвольный треугольник ABC и проведём через каждую из его вершин прямую, параллельную противолежащей стороне (рис.3).

Отношение высоты к основанию треугольника

Отношение высоты к основанию треугольника

Обозначим точки пересечения этих прямых символами A1 , B1 и C1 , как показано на рисунке 3.

Следовательно, точка B является серединой стороны C1A1 .

Следовательно, точка A является серединой стороны C1B1 .

Следовательно, точка C является серединой стороны B1A1 .

Отношение высоты к основанию треугольника

Отношение высоты к основанию треугольника

и в силу теоремы о серединных перпендикулярах пересекаются в одной точке.

Теорема 1 доказана.

Определение 2 . Точку пересечения высот треугольника (или их продолжений) называют ортоцентром треугольника.

У треугольников различных типов ортоцентры располагаются по-разному, как показано в следующей таблице.

Видео:Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.

Расположение ортоцентров у треугольников различных типов

Ортоцентр остроугольного треугольника лежит внутри треугольника.

Ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла

Отношение высоты к основанию треугольника

Отношение высоты к основанию треугольника

Ортоцентр тупоугольного треугольника лежит вне треугольника.
В ортоцентре тупоугольного треугольника пересекаются не высоты, а продолжения высот треугольника.

Отношение высоты к основанию треугольника

Ортоцентр остроугольного треугольника лежит внутри треугольника.

Отношение высоты к основанию треугольника

Ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла

Отношение высоты к основанию треугольника

Отношение высоты к основанию треугольника

Ортоцентр тупоугольного треугольника лежит вне треугольника.
В ортоцентре тупоугольного треугольника пересекаются не высоты, а продолжения высот треугольника.

Видео:Высоты треугольника.Скачать

Высоты треугольника.

Ортоцентрический треугольник

Решим следующую задачу.

Задача . В остроугольном треугольнике ABC проведены высоты AD и BE (рис.5). Доказать, что треугольник DCE подобен треугольнику ABC .

Отношение высоты к основанию треугольника

Решение . Рассмотрим треугольники ADC и BEC . Эти треугольники подобны в силу признака подобия прямоугольных треугольников с равными острыми углами (угол C общий). Следовательно, справедливо равенство

Отношение высоты к основанию треугольника

Это равенство, а также наличие общего угла C позволяют на основании признака подобия треугольников заключить, что и треугольники DCE и ABC подобны. Решение задачи завершено.

Отношение высоты к основанию треугольника

Отношение высоты к основанию треугольника

Определение 3 . Ортоцентрическим треугольником (ортотреугольником) называют треугольник, вершинами которого служат основания высот исходного треугольника (рис 6).

Отношение высоты к основанию треугольника

Из определения 3 и следствия 1 вытекает следствие 2.

Следствие 2 . Пусть FDE – ортоцентрический треугольник с вершинами в основаниях высот остроугольного треугольника ABC (рис 7).

Отношение высоты к основанию треугольника

Тогда справедливы равенства

Отношение высоты к основанию треугольника

Отношение высоты к основанию треугольника

Из следствия 2 вытекает теорема 2.

Теорема 2 . Высоты остроугольного треугольника являются биссектрисами углов его ортоцентрического треугольника (рис.7).

Доказательство . Воспользовавшись следствием 2, получаем:

Отношение высоты к основанию треугольника

Отношение высоты к основанию треугольника

что и требовалось доказать.

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Задача Фаньяно

Задача Фаньяно . Рассматриваются всевозможные треугольники DEF , вершины D, E и F которых лежат на сторонах BC, AC и AB остроугольного треугольника ABC соответственно. Доказать, что из всех треугольников DEF наименьшим периметром обладает ортоцентрический треугольник треугольника ABC .

Решение . Пусть DEF – один из рассматриваемых треугольников. Обозначим символом D1 точку, симметричную точке D относительно прямой AC , и обозначим символом D2 точку, симметричную точке D относительно прямой AB (рис.8).

Отношение высоты к основанию треугольника

Поскольку отрезок прямой – кратчайшее расстояние между двумя точками, то периметр треугольника DEF оказывается не меньшим, чем длина отрезка D1D2 . Отсюда вытекает, что при фиксированной точке D наименьшим периметром обладает такой треугольник DEF , вершины F и E которого являются точками пересечения прямой D1D2 с прямыми AB и AC соответственно. Периметр этого треугольника равен длине отрезка D1D2 (рис.9).

Отношение высоты к основанию треугольника

Заметим также, что выполнено равенство

Кроме того, выполнено равенство

Отношение высоты к основанию треугольника

Отношение высоты к основанию треугольника

Отношение высоты к основанию треугольника

Отсюда вытекает, что длина отрезка D1D2 будет наименьшей тогда, когда длина отрезка AD будет наименьшей, т.е. в том случае, когда отрезок AD является высотой треугольника ABC . Другими словами, наименьшим периметром обладает такой треугольник DEF , у которого вершина D является основанием высоты треугольника ABC , проведённой из вершины A , а вершины E и F построены по описанной выше схеме. Таким образом, среди всевозможных треугольников DEF треугольник с наименьшим периметром является единственным.

Если обозначить длину высоты, проведённой из вершины A , длину стороны AB и радиус описанной около треугольника ABC окружности буквами h, c и R соответственно, то, воспользовавшись теоремой синусов, получим:

Отношение высоты к основанию треугольника

Отношение высоты к основанию треугольника

Отношение высоты к основанию треугольника

Следовательно, наименьший периметр рассматриваемых треугольников DEF равен

Отношение высоты к основанию треугольника

Теперь докажем, что ортоцентрический треугольник и является треугольником с наименьшим периметром. Для этого воспользуемся следующей леммой.

Лемма . Пусть DEF – ортоцентрический треугольник треугольника ABC (рис.10).

Отношение высоты к основанию треугольника

В этом случае отрезок D1D2 проходит через точки F и E .

Доказательство . Заметим, что в силу следствия 2 выполняются равенства:

Отношение высоты к основанию треугольника

Отношение высоты к основанию треугольника

Кроме того, в силу равенства треугольников DFK и KFD2 , а также в силу равенства треугольников DEL и LED1 выполняются равенства:

Отношение высоты к основанию треугольника

Отношение высоты к основанию треугольника

Отношение высоты к основанию треугольника

Отношение высоты к основанию треугольника

откуда вытекает, что углы AEF и D1EL , а также AFE и D2FK являются вертикальными углами. Это означает, что точки D1 , F, E , D2 лежат на одной прямой. Лемма доказана.

Доказательство леммы и завершает решение задачи Фаньяно.

📹 Видео

№259. Угол, противолежащий основанию равнобедренного треугольника, равен 120°. Высота, проведеннаяСкачать

№259. Угол, противолежащий основанию равнобедренного треугольника, равен 120°. Высота, проведенная

Построение высоты в треугольникеСкачать

Построение высоты в треугольнике

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.

Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||Скачать

Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||

Отношение площадей треугольников с равным угломСкачать

Отношение площадей треугольников с равным углом

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)

№255. В равнобедренном треугольнике CDE с основанием СЕ проведена высота CF.Скачать

№255. В равнобедренном треугольнике CDE с основанием СЕ проведена высота CF.

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnline
Поделиться или сохранить к себе:
ФигураРисунокОписание
Остроугольный треугольникОтношение высоты к основанию треугольника
Прямоугольный треугольникОтношение высоты к основанию треугольника