Фигура | Рисунок | Формулировка | ||||||||
Прямоугольный треугольник | ||||||||||
Равнобедренный прямоугольный треугольник | ||||||||||
Прямоугольный треугольник с углом в 30° |
Прямоугольный треугольник |
Равнобедренный прямоугольный треугольник |
Определение равнобедренного прямоугольного треугольника: Равнобедренным прямоугольным треугольником называют такой прямоугольный треугольник, у которого равны катеты. Свойство углов прямоугольного треугольника: Острые углы равнобедренного прямоугольного треугольника равны 45° . |
Прямоугольный треугольник с углом в 30° |
Свойство прямоугольного треугольника с углом в 30° : Катет прямоугольного треугольника, лежащий против угла в 30° , равен половине гипотенузы. Признак прямоугольного треугольника с углом в 30° : Если в прямоугольном треугольнике один из катетов равен половине гипотенузы, то этот катет лежит против угла в 30° . |
Медиана, проведённая к гипотенузе прямоугольного треугольника |
Свойство медианы, проведенной к гипотенузе прямоугольного треугольника: Медиана прямоугольного треугольника, проведённая из вершины прямого угла, равна половине гипотенузы. Признак прямоугольного треугольника: Если в треугольнике медиана равна половине стороны, к которой она проведена, то такой треугольник является прямоугольным. |
Центр описанной окружности |
Свойство окружности, описанной около прямоугольного треугольника: Середина гипотенузы прямоугольного треугольника является центром описанной около него окружности. Признак прямоугольного треугольника: Если в треугольнике центр описанной окружности лежит на одной из сторон, то этот треугольник является прямоугольным треугольником, а центр описанной окружности совпадает с серединой гипотенузы. |
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов Обратная теорема Пифагора: Если в треугольнике квадрат одной стороны равен сумме квадратов двух других сторон, то такой треугольник является прямоугольным Содержание Видео:Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать Прямоугольный треугольникПрямоугольный треугольник – треугольник, в котором один угол прямой (то есть равен 90˚). Сторона, противоположная прямому углу, называется гипотенузой прямоугольного треугольника. Стороны, прилежащие к прямому углу, называются катетами .
Признаки равенства прямоугольных треугольниковЕсли катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны ( по двум катетам ). Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны ( по катету и острому углу ). Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и острому углу ). Если гипотенуза и катет одного прямоугольного треугольника равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и катету ). Свойства прямоугольного треугольника1. Сумма острых углов прямоугольного треугольника равна 90˚. 2. Катет, противолежащий углу в 30˚, равен половине гипотенузы. И обратно, если в треугольнике катет вдвое меньше гипотенузы, то напротив него лежит угол в 30˚. 3. Теорема Пифагора: , где – катеты, – гипотенуза. Видеодоказательство 4. Площадь прямоугольного треугольника с катетами : 5. Высота прямоугольного треугольника, проведенная к гипотенузе выражается через катеты и гипотенузу следующим образом: 6. Центр описанной окружности – есть середина гипотенузы. 7. Радиус описанной окружности есть половина гипотенузы : 8. Медиана, проведенная к гипотенузе, равна ее половине 9. Радиус вписанной окружности выражается через катеты и гипотенузу следующим образом: Тригонометрические соотношения в прямоугольном треугольнике смотрите здесь. Видео:7 класс, 35 урок, Некоторые свойства прямоугольных треугольниковСкачать Прямоугольный треугольник. Теорема Пифагора.теория по математике 📈 планиметрияЕсли в треугольнике есть угол, равный 90 градусов, то такой треугольник называется прямоугольным. Стороны прямоугольного треугольника называются – катеты и гипотенуза. Катеты – это стороны, образующие прямой угол. Гипотенуза – сторона, которая располагается напротив прямого угла. На рисунке треугольник АВС – прямоугольный, угол С равен 90º, стороны АС и ВС – катеты, а сторона АВ – гипотенуза. Видео:Свойства прямоугольного треугольника. 7 класс.Скачать Свойства прямоугольного треугольника
Например, пусть угол А=30 0 , а гипотенуза АВ=28 см, то катет ВС будет равен 14 см, так как лежит напротив угла А=30 0 . Или, например, если катет ВС=6 см, а гипотенуза АВ равна 12 см, то угол А (лежащий напротив катета ВС), равен 30 0 .
На рисунке изображен прямоугольный треугольник АВС, где CD – медиана, проведенная к гипотенузе. По свойству – медиана CD=0,5АВ, то есть AD=DB=CD. Видео:ГЕОМЕТРИЯ 7 класс. Медиана прямоугольного треугольника. Свойство. Доказательство для 7 класса.Скачать Признаки равенства прямоугольных треугольниковСуществует 4 признака равенства прямоугольных треугольников:
Чтобы быстрее запомнить данные признаки, можно использовать их краткую трактовку:
Видео:Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)Скачать Теорема ПифагораДревнегреческий философ, ученый, математик – Пифагор Самосский вывел теорему, которая до сих применима для решения задач. Теорема названа в честь него – «теорема Пифагора». В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. На рисунке в прямоугольном треугольнике АВ 2 =АС 2 +ВС 2 Например, если в данном треугольнике катеты равны 9 и 12 см, то можно найти длину гипотенузы, используя теорему: АВ 2 =9 2 +12 2 =81+144=225=15 2 , значит АВ=15 см. Египетский треугольникТреугольник со сторонами 3, 4 и 5 см называют Египетским треугольником. Пифагоровы тройкиТройки чисел, которые удовлетворяют теореме Пифагора, называют Пифагоровы тройки, а сами числа – Пифагоровы числа. Например, такими являются числа 16, 12 и 20 – это числа, которые при подстановке в формулу теоремы, дают нам верное равенство: 16 2 +12 2 =20 2 , 256+144=400, 400=400. 🌟 ВидеоГеометрия 7 класс : Свойства прямоугольного треугольникаСкачать Свойство медианы в прямоугольном треугольнике. 8 класс.Скачать 7 класс, 36 урок, Признаки равенства прямоугольных треугольниковСкачать СВОЙСТВА ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА §18 геометрия 7 классСкачать Катеты и гипотенузаСкачать Свойства прямоугольного треугольника. Практическая часть. 7 класс.Скачать Доказать, что медиана, проведенная к гипотенузе, равна половине гипотенузыСкачать 7 кл г. Теорема: «катет лежавший напротив угла в 30 градусов равен половине гипотенузы»Скачать Свойство прямоугольного треугольникаСкачать 35. Некоторые свойства прямоугольных треугольниковСкачать Некоторые свойства прямоугольного треугольника | Геометрия 7-9 класс #35 | ИнфоурокСкачать Высота в прямоугольном треугольнике. 8 класс.Скачать Свойства прямоугольного треугольника - 7 класс геометрияСкачать Прямоугольный треугольник. Свойства, доказательства.Скачать №256. Один из углов прямоугольного треугольника равен 60°, а сумма гипотенузы и меньшего из катетовСкачать |