Сумма 2 одинаковых векторов

Сложение и вычитание векторов

Сумма 2 одинаковых векторов

Теорема 1 От любой точки ( K ) можно отложить вектор единственный ( overrightarrow ) .

Существование: Имеем два следующих случая:

Здесь получаем, что искомый нами вектор совпадает с вектором ( overrightarrow ) .

Сумма 2 одинаковых векторов

Из данного выше построения сразу же будет следовать единственность данного вектора.

Содержание
  1. Сумма векторов. Сложение векторов. Правило треугольника
  2. Разность векторов. Вычитание векторов
  3. Умножение вектора на число
  4. Геометрия сумма двух векторов
  5. Сложение векторов. Векторная сумма. Правила сложения векторов. Геометрическая сумма. Он-лайн калькулятор.
  6. Сложение векторов. Векторная сумма. Правила сложения векторов. Геометрическая сумма. Он-лайн калькулятор
  7. Покоординатное сложение векторов.
  8. Правило параллелограмма. Сложение векторов по правилу параллелограмма.
  9. Правило треугольника. Сложение векторов по правилу треугольника.
  10. Тригонометрический способ. Сложение векторов тригонометрическим способом.
  11. Сложение и вычитание векторов
  12. Сумма векторов. Сложение векторов. Правило треугольника
  13. Разность векторов. Вычитание векторов
  14. Умножение вектора на число
  15. Сумма и разность векторов
  16. Сумма векторов
  17. Формула сложения векторов
  18. Свойства сложения векторов
  19. Разность векторов
  20. Формула вычитания векторов
  21. Примеры задач
  22. Сложение векторов
  23. 💥 Видео

Видео:Геометрия 9 класс (Урок№2 - Сумма двух векторов. Законы сложения векторов.)Скачать

Геометрия 9 класс (Урок№2 - Сумма двух векторов. Законы сложения векторов.)

Сумма векторов. Сложение векторов. Правило треугольника

Сложение векторов выполняется по правилу треугольника или по правилу параллелограмма.

Сумма 2 одинаковых векторов

Суммой нескольких векторов ( vec ) , ( vec ) , ( vec,;ldots ) называется вектор ( vec ) , получающийся в результате последовательного сложения данных векторов.

Такая операция выполняется по правилу многоугольника.

Сумма 2 одинаковых векторов

Сумма векторов в координатах
При сложении двух векторов соответствующие координаты складываются.
( vec + vec = left( <+ , + , + > right) )

Отметим несколько свойств сложения двух векторов:

Для произвольного вектора ( overrightarrow ) выполняется равенство

Для произвольных точек ( A, B и C ) справедливо следующее равенство

Замечание Таким способом также можно строить сумму любого числа векторов. Тогда оно будет носить название правила многоугольника.

Сумма 2 одинаковых векторов

Разность векторов. Вычитание векторов

Сумма 2 одинаковых векторов

Разность двух одинаковых векторов равна нулевому вектору :
( vec — vec = vec )

Длина нулевого вектора равна нулю:
( left| vec right| = 0 )

Разность векторов в координатах
При вычитании двух векторов соответствующие координаты также вычитаются.
( vec — vec = left( <- , — , — > right) )

Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Умножение вектора на число

Пусть нам дан вектор ( overrightarrow ) и действительное число ( k ) .

Определение Произведением вектора ( overrightarrow ) на действительное число ( k ) называется вектор ( overrightarrow ) удовлетворяющий следующим условиям:

Длина вектора ( overrightarrow ) равна ( left|overrightarrowright|=left|kright||overrightarrow| ) ;

Векторы ( overrightarrow ) и ( overrightarrow ) сонаправлены, при ( kge 0 ) и противоположно направлены, если ( kle 0 )

Обозначение: ( overrightarrow=koverrightarrow ) .

Геометрия сумма двух векторов

Видео:Сумма двух векторов | Геометрия 7-9 класс #79 | ИнфоурокСкачать

Сумма двух векторов | Геометрия 7-9 класс #79 | Инфоурок

Сложение векторов. Векторная сумма. Правила сложения векторов. Геометрическая сумма. Он-лайн калькулятор.

Видео:10 класс, 41 урок, Сумма нескольких векторовСкачать

10 класс, 41 урок, Сумма нескольких векторов

Сложение векторов. Векторная сумма. Правила сложения векторов. Геометрическая сумма. Он-лайн калькулятор

В механике существуют два типа величин:

  • скалярные величины, задающие некоторое числовое значение — время, температура, масса и т.д.
  • векторные величины, которые вместе с некоторым числовым значением задают направление — скорость, сила и т.д..

Рассмотрим сначала алгебраический подход к сложению векторов.

Покоординатное сложение векторов.

Сумма 2 одинаковых векторов

Тогда координаты вектора, получившегося при сложении этих двух векторов вычисляются по формуле:

Сумма 2 одинаковых векторов

В двумерном случае все абсолютно анологично, просто отбрасываем третью координату.

Теперь перейдем к геометрическому смыслу сложения двух векторов:

При сложении векторов нужно учитывать и их числовые значения, и направления. Есть несколько широко используемых методов сложения:

Правило параллелограмма. Сложение векторов по правилу параллелограмма.

Сумма 2 одинаковых векторов

Процедура сложения векторов по правилу параллелограмма заключается в следующем:

  • нарисовать первый вектор, учитывая его величину и направление
  • от начала первого вектора нарисовать второй вектор, также используя и его величину, и его направление
  • дополнить рисунок до параллелограмма, считая, что два нарисованных вектора — это его стороны
  • результирующим вектором будет диагональ параллелограмма, причем его начало будет совпадать с началом первого (а, значит, и второго) вектора.

Правило треугольника. Сложение векторов по правилу треугольника.

Сумма 2 одинаковых векторов

Сложение векторов по правилу треугольника заключается в следующем:

  • нарисовать первый вектор, используя данные о его длине ( числовой величине) и направлении
  • от конца первого вектора нарисовать второй вектор, также учитывая и его размер, и его направление
  • результирующим вектором будет вектор, начало которого совпадает с началом первого вектора, а конец — с концом второго.

Тригонометрический способ. Сложение векторов тригонометрическим способом.

Сумма 2 одинаковых векторовРезультирующий вектор сложения двух компланарных векторов может быть вычислен с помощью теоремы косинусов:

  • Fрез. = [ F1 2 + F2 2 -2 F1 F2 cos(180 о -α) ] 1/2 (1)
    • где
      • F = числовое значение вектора
      • α = угол между векторами 1 и 2

Угол между результирующим вектором и одним из исходных векторов может быть вычислен по теореме синусов:

  • β = arcsin[ F2 *sin(180 o -α) / FR ] (2)
    • где
      • α = угол между исходными векторами

Пример — сложение векторов.

Сила 1 равна 5кН и воздействует на тело в направлении, на 80 o отличающемся от направления действия второй силы, равной 8 кН.

Результирующая сила вычисляется следующим образом:

Fрез = [ (5 кН) 2 + (8 кН) 2 — 2 (5 кН)(8 kН) cos(180 o — (80 o )) ] 1/2

Угол между результирующей силой и первой силой равен:

А угол между второй и результирующей силой можно посчитать следующим образом: as

α = arcsin [ (5 кН) sin(180 o — (80 o )) / (10,2 кН) ]

Он-лайн калькулятор сложения векторов.

Калькулятор ниже может быть использован для любвых векторных величин ( силы, скорости и т.д.) Точка начала вектора совпадает с началами обоих исходных векторов.

Консультации и техническая
поддержка сайта: Zavarka Team

Видео:Сложение векторов. 9 класс.Скачать

Сложение векторов. 9 класс.

Сложение и вычитание векторов

Сумма 2 одинаковых векторов

Теорема 1 От любой точки ( K ) можно отложить вектор единственный ( overrightarrow ) .

Существование: Имеем два следующих случая:

Здесь получаем, что искомый нами вектор совпадает с вектором ( overrightarrow ) .

Сумма 2 одинаковых векторов

Из данного выше построения сразу же будет следовать единственность данного вектора.

Видео:СУММА ВЕКТОРОВ правило треугольникаСкачать

СУММА ВЕКТОРОВ правило треугольника

Сумма векторов. Сложение векторов. Правило треугольника

Сложение векторов выполняется по правилу треугольника или по правилу параллелограмма.

Сумма 2 одинаковых векторов

Такая операция выполняется по правилу многоугольника.

Сумма 2 одинаковых векторов

Сумма векторов в координатах
При сложении двух векторов соответствующие координаты складываются.
( vec + vec = left( + , + , + > right) )

Отметим несколько свойств сложения двух векторов:

Для произвольного вектора ( overrightarrow ) выполняется равенство

Для произвольных точек ( A, B и C ) справедливо следующее равенство

Замечание Таким способом также можно строить сумму любого числа векторов. Тогда оно будет носить название правила многоугольника.

Сумма 2 одинаковых векторов

Видео:Сумма и разность векторов. Урок 2. Геометрия 9 классСкачать

Сумма и разность векторов. Урок 2. Геометрия  9 класс

Разность векторов. Вычитание векторов

Сумма 2 одинаковых векторов

Разность двух одинаковых векторов равна нулевому вектору :
( vec — vec = vec )

Длина нулевого вектора равна нулю:
( left| vec right| = 0 )

Разность векторов в координатах
При вычитании двух векторов соответствующие координаты также вычитаются.
( vec — vec = left( — , — , — > right) )

Видео:ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэСкачать

ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэ

Умножение вектора на число

Пусть нам дан вектор ( overrightarrow ) и действительное число ( k ) .

Длина вектора ( overrightarrow ) равна ( left|overrightarrow right|=left|kright||overrightarrow| ) ;

Обозначение: ( overrightarrow =koverrightarrow ) .

Видео:Новое задание профиля №2. Все, что нужно знать о векторах | Аня МатеманяСкачать

Новое задание профиля №2. Все, что нужно знать о векторах | Аня Матеманя

Сумма и разность векторов

В данной публикации мы рассмотрим, как найти сумму и разность векторов, приведем геометрическую интерпретацию, а также формулы, свойства и примеры этих действий.

Видео:Сложение и вычитание векторов. Практическая часть. 11 класс.Скачать

Сложение и вычитание векторов. Практическая часть. 11 класс.

Сумма векторов

Сложение векторов выполняется по правилу треугольника.

Сумма 2 одинаковых векторов

Геометрическая интерпретация:

Суммой a и b является вектор c , начало которого совпадает с началом a , а конец – с концом b . При этом конец вектора a должен совпадать с началом вектора b .

Для сложения векторов также используется правило параллелограмма.

Сумма 2 одинаковых векторов

Два неколлинеарных вектора a и b можно привести к общему началу, и в этом случае их суммой является вектор c , совпадающий с диагональю параллелограмма и берущий начало в той же точке, что и исходные векторы.

Формула сложения векторов

Элементы вектора c равняются попарной сумме соответствующих элементов a и b .

<td data-cell-id="B1" data-x="1" data-y="1" data-db-index="1" data-cell-type="text" data-original-value=" a + b = x + bx; ay + by> » data-order=» a + b = x + bx; ay + by> » style=»min-width:55.0847%; width:55.0847%;»> a + b = x + bx; ay + by>

<td data-cell-id="B2" data-x="1" data-y="2" data-db-index="2" data-cell-type="text" data-original-value=" a + b = x + bx; ay + by; az + bz> » data-order=» a + b = x + bx; ay + by; az + bz> «> a + b = x + bx; ay + by; az + bz>

<td data-cell-id="B3" data-x="1" data-y="3" data-db-index="3" data-cell-type="text" data-original-value=" a + b = 1 + b1; a2 + b2; . an + bn> » data-order=» a + b = 1 + b1; a2 + b2; . an + bn> «> a + b = 1 + b1; a2 + b2; . an + bn>

Для плоских задач
Для трехмерных задач
Для n-мерных векторов

Свойства сложения векторов

1. Коммутативность: a + b = b + a

2. Ассоциативность: ( a + b ) + c = a + ( b + c )

3. Прибавление к нулю: a + 0 = a

4. Сумма противоположных векторов: a + (- a ) = 0

Примечание: Вектор – a коллинеарен и равен по длине a , но имеет противоположное направление, из-за чего называется противоположным.

Видео:Вычитание векторов. 9 класс.Скачать

Вычитание векторов. 9 класс.

Разность векторов

Для вычитания векторов также применяется правило треугольника.

Сумма 2 одинаковых векторов

Если из вектора a вычесть b , то получится c , причем должно соблюдаться условие:

Формула вычитания векторов

Элементы вектора c равны попарной разности соответствующих элементов a и b .

<td data-cell-id="B1" data-x="1" data-y="1" data-db-index="1" data-cell-type="text" data-original-value=" a — b = x — bx; ay — by> » data-order=» a — b = x — bx; ay — by> » style=»min-width:55.0847%; width:55.0847%;»> a — b = x — bx; ay — by>

<td data-cell-id="B2" data-x="1" data-y="2" data-db-index="2" data-cell-type="text" data-original-value=" a — b = x — bx; ay — by; az — bz> » data-order=» a — b = x — bx; ay — by; az — bz> «> a — b = x — bx; ay — by; az — bz>

<td data-cell-id="B3" data-x="1" data-y="3" data-db-index="3" data-cell-type="text" data-original-value=" a — b = 1 — b1; a2 — b2; . an — bn> » data-order=» a — b = 1 — b1; a2 — b2; . an — bn> «> a — b = 1 — b1; a2 — b2; . an — bn>

Для плоских задач
Для трехмерных задач
Для n-мерных векторов

Видео:Сумма двух векторов. Правило треугольника. Законы сложения векторов. Правило параллелограмма.Скачать

Сумма двух векторов. Правило треугольника. Законы сложения векторов. Правило параллелограмма.

Примеры задач

Задание 1
Вычислим сумму векторов и .

Задание 2
Найдем разность векторов и .

Видео:ВЕКТОРЫ 9 класс С НУЛЯ | Математика ОГЭ 2023 | УмскулСкачать

ВЕКТОРЫ 9 класс С НУЛЯ | Математика ОГЭ 2023 | Умскул

Сложение векторов

Сумма векторов

Сумма 2 одинаковых векторов

Сумма 2 одинаковых векторов

Сумма 2 одинаковых векторов

Сумма 2 одинаковых векторов

Сумма 2 одинаковых векторов

Свойства сложения векторов:

Для любых векторов

Сумма 2 одинаковых векторов

Сумма 2 одинаковых векторов

Сумма 2 одинаковых векторов

3) свойство прибавления нулевого вектора:

Сумма 2 одинаковых векторов

4) сумма противоположных векторов равна нулевому вектору:

Сумма 2 одинаковых векторов

Достаточно сравнить координаты векторов, стоящих в левой и правой частях этих равенств:

Сумма 2 одинаковых векторов

Сумма 2 одинаковых векторов

Так как соответствующие координаты равны, то эти векторы равны.

Сумма 2 одинаковых векторов

Сумма 2 одинаковых векторов

Сумма 2 одинаковых векторов

Сумма 2 одинаковых векторов

Сумма 2 одинаковых векторов

Сумма 2 одинаковых векторов

Сумма 2 одинаковых векторов

(О сложении векторов)

Каковы бы ни были точки A, B, C, имеет место векторное равенство:

Сумма 2 одинаковых векторов

Сумма 2 одинаковых векторов

Сумма 2 одинаковых векторов

Сумма 2 одинаковых векторов

Сумма 2 одинаковых векторов

Сумма 2 одинаковых векторов

Что и требовалось доказать.

Правило треугольника построения суммы двух векторов

Чтобы построить сумму двух векторов по правилу треугольника, надо от конца одного вектора отложить другой вектор и провести вектор от начала первого к концу второго вектора.

Сумма 2 одинаковых векторовНапример,

Сумма 2 одинаковых векторов

(то есть это правило следует из теоремы о сложении векторов).

Правило параллелограмма построения суммы двух векторов

Чтобы построить сумму двух векторов по правилу параллелограмма, надо отложить эти векторы от общего начала. Сумма векторов есть диагональ параллелограмма, построенного на этих векторах и имеющая с ними общее начало.

Сумма 2 одинаковых векторовНапример,

Сумма 2 одинаковых векторов

Правило параллелограмма построения суммы векторов применяется лишь для неколлинеарных векторов.

При любом способе построения суммы неколлинеарных векторов получим одинаковый результат.

Сумма 2 одинаковых векторовПостроить сумму векторов

Сумма 2 одинаковых векторов

Сумма 2 одинаковых векторов

1) Чтобы построить сумму векторов по правилу треугольника, отложим от конца вектора

Сумма 2 одинаковых векторов

Сумма 2 одинаковых векторов

Сумма этих векторов равна вектору, проведённому от начала первого вектора (a) к концу второго (b).

2) Чтобы построить сумму векторов по правилу параллелограмма, отложим векторы

Сумма 2 одинаковых векторов

от общего начала.

Достроим на этих векторах параллелограмм.

Сумма 2 одинаковых векторовСумма

Сумма 2 одинаковых векторов

равна вектору, лежащему на диагонали параллелограмма и имеющему с ними общее начало.

1) Сумма двух сонаправленных коллинеарных векторов равна вектору, сонаправленному этим векторам, длина которого равна сумме длин данных векторов.

Сумма 2 одинаковых векторов

2) Сумма двух противоположно направленных векторов равна вектору, направление которого совпадает с направлением вектора, модуль которого больше, а длина равна разности этих векторов.

Сумма 2 одинаковых векторов

Фактически в обоих случаях мы используем правило треугольника сложения векторов:

от конца первого вектора откладываем вектор, равный второму, и строим сумму как вектор в направлении от начала первого вектора к концу второго.

Из неравенства треугольника следует ещё два свойства сложения векторов:

💥 Видео

8 класс, 45 урок, Сумма нескольких векторовСкачать

8 класс, 45 урок, Сумма нескольких векторов

2 урок. Сложение и вычитание векторов | Геометрия. 9 классСкачать

2 урок. Сложение и вычитание векторов | Геометрия. 9 класс

Сложение векторов. Правило параллелограмма. 9 класс.Скачать

Сложение векторов. Правило параллелограмма. 9 класс.

Сложение двух векторовСкачать

Сложение двух векторов

10 класс, 40 урок, Сложение и вычитание векторовСкачать

10 класс, 40 урок, Сложение и вычитание векторов
Поделиться или сохранить к себе: