Сторона треугольник равна произведению радиуса описанной окружности

Если сторона треугольника равна радиусу описанной окружности

Если сторона треугольника равна радиусу описанной окружности, то что можно сказать о свойствах такого треугольника?

Сторона треугольник равна произведению радиуса описанной окружности

где α — угол, лежащий напротив стороны a.

Сторона треугольник равна произведению радиуса описанной окружности

Для треугольника 0° Сторона треугольник равна произведению радиуса описанной окружности

удовлетворяют два угла: 30° и 150°.

1) Если в тупоугольном треугольнике наибольшая из сторон равна радиусу окружности, описанной около треугольника, то угол, лежащий против этой стороны, равен 150°.

2) Если в остроугольном треугольнике одна из сторон равна радиусу описанной около треугольника окружности, то угол, противолежащий этой стороне угол равен 30°.

Если в задаче ничего не сказано о виде треугольника и нет никаких дополнительных условий, из которых можно определить его вид, то угол может быть равным как 30°, так и 150°.

Содержание
  1. Теорема синусов
  2. Доказательство теоремы синусов
  3. Доказательство следствия из теоремы синусов
  4. Теорема о вписанном в окружность угле
  5. Примеры решения задач
  6. Запоминаем
  7. Треугольник. Формулы и свойства треугольников.
  8. Типы треугольников
  9. По величине углов
  10. По числу равных сторон
  11. Вершины углы и стороны треугольника
  12. Свойства углов и сторон треугольника
  13. Теорема синусов
  14. Теорема косинусов
  15. Теорема о проекциях
  16. Формулы для вычисления длин сторон треугольника
  17. Медианы треугольника
  18. Свойства медиан треугольника:
  19. Формулы медиан треугольника
  20. Биссектрисы треугольника
  21. Свойства биссектрис треугольника:
  22. Формулы биссектрис треугольника
  23. Высоты треугольника
  24. Свойства высот треугольника
  25. Формулы высот треугольника
  26. Окружность вписанная в треугольник
  27. Свойства окружности вписанной в треугольник
  28. Формулы радиуса окружности вписанной в треугольник
  29. Окружность описанная вокруг треугольника
  30. Свойства окружности описанной вокруг треугольника
  31. Формулы радиуса окружности описанной вокруг треугольника
  32. Связь между вписанной и описанной окружностями треугольника
  33. Средняя линия треугольника
  34. Свойства средней линии треугольника
  35. Периметр треугольника
  36. Формулы площади треугольника
  37. Формула Герона
  38. Равенство треугольников
  39. Признаки равенства треугольников
  40. Первый признак равенства треугольников — по двум сторонам и углу между ними
  41. Второй признак равенства треугольников — по стороне и двум прилежащим углам
  42. Третий признак равенства треугольников — по трем сторонам
  43. Подобие треугольников
  44. Признаки подобия треугольников
  45. Первый признак подобия треугольников
  46. Второй признак подобия треугольников
  47. Третий признак подобия треугольников

Видео:Радиус описанной окружностиСкачать

Радиус описанной окружности

Теорема синусов

Сторона треугольник равна произведению радиуса описанной окружности

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Геометрия Доказательство Площадь треугольника равна произведению его полупериметра и радиусаСкачать

Геометрия Доказательство Площадь треугольника равна произведению его полупериметра и радиуса

Доказательство теоремы синусов

Теорема синусов звучит так: стороны треугольника пропорциональны синусам противолежащих углов.

Нарисуем стандартный треугольник и запишем теорему формулой:

Сторона треугольник равна произведению радиуса описанной окружности

Формула теоремы синусов:

Сторона треугольник равна произведению радиуса описанной окружности

Докажем теорему с помощью формулы площади треугольника через синус его угла.

Сторона треугольник равна произведению радиуса описанной окружности

Из этой формулы мы получаем два соотношения:


    Сторона треугольник равна произведению радиуса описанной окружности

Сторона треугольник равна произведению радиуса описанной окружности
На b сокращаем, синусы переносим в знаменатели:
Сторона треугольник равна произведению радиуса описанной окружности

  • Сторона треугольник равна произведению радиуса описанной окружности
    bc sinα = ca sinβ
    Сторона треугольник равна произведению радиуса описанной окружности
  • Из этих двух соотношений получаем:

    Сторона треугольник равна произведению радиуса описанной окружности

    Теорема синусов для треугольника доказана.

    Эта теорема пригодится, чтобы найти:

    • Стороны треугольника, если даны два угла и одна сторона.
    • Углы треугольника, если даны две стороны и один прилежащий угол.

    Видео:Задача 6 №27909 ЕГЭ по математике. Урок 129Скачать

    Задача 6 №27909 ЕГЭ по математике. Урок 129

    Доказательство следствия из теоремы синусов

    У теоремы синусов есть важное следствие. Нарисуем треугольник, опишем вокруг него окружность и рассмотрим следствие через радиус.

    Сторона треугольник равна произведению радиуса описанной окружности

    Сторона треугольник равна произведению радиуса описанной окружности

    где R — радиус описанной около треугольника окружности.

    Так образовались три формулы радиуса описанной окружности:

    Сторона треугольник равна произведению радиуса описанной окружности

    Основной смысл следствия из теоремы синусов заключен в этой формуле:

    Сторона треугольник равна произведению радиуса описанной окружности

    Радиус описанной окружности не зависит от углов α, β, γ. Удвоенный радиус описанной окружности равен отношению стороны треугольника к синусу противолежащего угла.

    Для доказательства следствия теоремы синусов рассмотрим три случая.

    1. Угол ∠А = α — острый в треугольнике АВС.

    Сторона треугольник равна произведению радиуса описанной окружности

    Проведем диаметр BA1. В этом случае точка А и точка А1 лежат в одной полуплоскости от прямой ВС.

    Используем теорему о вписанном угле и видим, что ∠А = ∠А1 = α. Треугольник BA1C — прямоугольный, в нём ∠ BCA1 = 90°, так как он опирается на диаметр BA1.

    Чтобы найти катет a в треугольнике BA1C, нужно умножить гипотенузу BA1 на синус противолежащего угла.

    BA1 = 2R, где R — радиус окружности

    Следовательно: R = α/2 sinα

    Для острого треугольника с описанной окружностью теорема доказана.

    2. Угол ∠А = α — тупой в треугольнике АВС.

    Проведем диаметр окружности BA1. Точки А и A1 по разные стороны от прямой ВС. Четырёхугольник ACA1B вписан в окружность, и его основное свойство в том, что сумма противолежащих углов равна 180°.

    Следовательно, ∠А1 = 180° — α.

    Сторона треугольник равна произведению радиуса описанной окружности

    Вспомним свойство вписанного в окружность четырёхугольника:

    Сторона треугольник равна произведению радиуса описанной окружности

    Также известно, что sin(180° — α) = sinα.

    В треугольнике BCA1 угол при вершине С равен 90°, потому что он опирается на диаметр. Следовательно, катет а мы находим таким образом:

    α = 2R sin (180° — α) = 2R sinα

    Следовательно: R = α/2 sinα

    Для тупого треугольника с описанной окружностью теорема доказана.

    Часто используемые тупые углы:

    • sin120° = sin(180° — 60°) = sin60° = 3/√2;
    • sin150° = sin(180° — 30°) = sin30° = 1/2;
    • sin135° = sin(180° — 45°) = sin45° = 2/√2.

    3. Угол ∠А = 90°.

    Сторона треугольник равна произведению радиуса описанной окружности

    В прямоугольнике АВС угол А прямой, а противоположная сторона BC = α = 2R, где R — это радиус описанной окружности.

    Сторона треугольник равна произведению радиуса описанной окружности

    Для прямоугольного треугольника с описанной окружностью теорема доказана.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

    Окружность вписанная в треугольник и описанная около треугольника.

    Теорема о вписанном в окружность угле

    Из теоремы синусов и ее следствия можно сделать любопытный вывод: если известна одна сторона треугольника и синус противолежащего угла — можно найти и радиус описанной окружности. Но треугольник не задаётся только этими величинами. Это значит, что если треугольник еще не задан, найти радиус описанной окружности возможно.

    Раскроем эту тему на примере теоремы о вписанном в окружность угле и следствиях из нее.

    Теорема о вписанном угле: вписанный в окружность угол измеряется половиной дуги, на которую он опирается.

    Сторона треугольник равна произведению радиуса описанной окружности

    ∠А = α опирается на дугу ВС. Дуга ВС содержит столько же градусов, сколько ее центральный угол ∠BOC.

    Формула теоремы о вписанном угле:

    Сторона треугольник равна произведению радиуса описанной окружности

    Следствие 1 из теоремы о вписанном в окружность угле

    Вписанные углы, опирающиеся на одну дугу, равны.

    Сторона треугольник равна произведению радиуса описанной окружности

    ∠А = ∠BAC опирается на дугу ВС. Поэтому ∠A = 1/2(∠COB).

    Если мы возьмём точки A1, А2. Аn и проведём от них лучи, которые опираются на одну и ту же дугу, то получим:

    Сторона треугольник равна произведению радиуса описанной окружности

    На рисунке изображено множество треугольников, у которых есть общая сторона СВ и одинаковый противолежащий угол. Треугольники являются подобными, и их объединяет одинаковый радиус описанной окружности.

    Следствие 2 из теоремы о вписанном в окружность угле

    Вписанные углы, которые опираются на диаметр, равны 90°, то есть прямые.

    Сторона треугольник равна произведению радиуса описанной окружности

    ВС — диаметр описанной окружности, следовательно ∠COB = 180°.

    Сторона треугольник равна произведению радиуса описанной окружности

    Следствие 3 из теоремы о вписанном в окружность угле

    Сумма противоположных углов вписанного в окружность четырёхугольника равна 180°. Это значит, что:

    Сторона треугольник равна произведению радиуса описанной окружности

    Угол ∠А = α опирается на дугу DCB. Поэтому DCB = 2α по теореме о вписанном угле.

    Угол ∠С = γ опирается на дугу DAB. Поэтому DAB = 2γ.

    Но так как 2α и 2γ — это вся окружность, то 2α + 2γ = 360°.

    Следовательно: α + γ = 180°.

    Поэтому: ∠A + ∠C = 180°.

    Следствие 4 из теоремы о вписанном в окружность угле

    Синусы противоположных углов вписанного четырехугольника равны. То есть:

    sinγ = sin(180° — α)

    Так как sin(180° — α) = sinα, то sinγ = sin(180° — α) = sinα

    Видео:Задача 6 №27934 ЕГЭ по математике. Урок 148Скачать

    Задача 6 №27934 ЕГЭ по математике. Урок 148

    Примеры решения задач

    Теорема синусов и следствия из неё активно используются при решении задач. Рассмотрим несколько примеров, чтобы закрепить материал.

    Пример 1. В треугольнике ABC ∠A = 45°,∠C = 15°, BC = 4√6. Найти AC.

      Согласно теореме о сумме углов треугольника:

    ∠B = 180° — 45° — 15° = 120°

  • Сторону AC найдем по теореме синусов:
    Сторона треугольник равна произведению радиуса описанной окружности
  • Пример 2. Гипотенуза и один из катетов прямоугольного треугольника равны 10 и 8 см. Найти угол, который расположен напротив данного катета.

    В этой статье мы узнали, что в прямоугольном треугольнике напротив гипотенузы располагается угол, равный 90°. Примем неизвестный угол за x. Тогда соотношение сторон выглядит так:

    Сторона треугольник равна произведению радиуса описанной окружности

    Сторона треугольник равна произведению радиуса описанной окружности

    Значит x = sin (4/5) ≈ 53,1°.

    Ответ: угол составляет примерно 53,1°.

    Видео:Формула радиуса описанной окружности треугольника. Геометрия 9 классСкачать

    Формула радиуса описанной окружности треугольника. Геометрия 9 класс

    Запоминаем

    Обычная теорема: стороны треугольника пропорциональны синусам противолежащих углов.

    >
    Сторона треугольник равна произведению радиуса описанной окружности

    Расширенная теорема: в произвольном треугольнике справедливо следующее соотношение:

    Видео:Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать

    Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.

    Треугольник. Формулы и свойства треугольников.

    Видео:Задача 6 №27923 ЕГЭ по математике. Урок 140Скачать

    Задача 6 №27923 ЕГЭ по математике. Урок 140

    Типы треугольников

    По величине углов

    Сторона треугольник равна произведению радиуса описанной окружности

    Сторона треугольник равна произведению радиуса описанной окружности

    Сторона треугольник равна произведению радиуса описанной окружности

    По числу равных сторон

    Сторона треугольник равна произведению радиуса описанной окружности

    Сторона треугольник равна произведению радиуса описанной окружности

    Сторона треугольник равна произведению радиуса описанной окружности

    Видео:Задача 6 №27919 ЕГЭ по математике. Урок 136Скачать

    Задача 6 №27919 ЕГЭ по математике. Урок 136

    Вершины углы и стороны треугольника

    Свойства углов и сторон треугольника

    Сторона треугольник равна произведению радиуса описанной окружности

    Сумма углов треугольника равна 180°:

    В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

    если α > β , тогда a > b

    если α = β , тогда a = b

    Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

    a + b > c
    b + c > a
    c + a > b

    Теорема синусов

    Стороны треугольника пропорциональны синусам противолежащих углов.

    a=b=c= 2R
    sin αsin βsin γ

    Теорема косинусов

    Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

    a 2 = b 2 + c 2 — 2 bc · cos α

    b 2 = a 2 + c 2 — 2 ac · cos β

    c 2 = a 2 + b 2 — 2 ab · cos γ

    Теорема о проекциях

    Для остроугольного треугольника:

    a = b cos γ + c cos β

    b = a cos γ + c cos α

    c = a cos β + b cos α

    Формулы для вычисления длин сторон треугольника

    Видео:Задача 6 №27624 ЕГЭ по математике. Урок 71Скачать

    Задача 6 №27624 ЕГЭ по математике. Урок 71

    Медианы треугольника

    Сторона треугольник равна произведению радиуса описанной окружности

    Свойства медиан треугольника:

    В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

    Медиана треугольника делит треугольник на две равновеликие части

    Треугольник делится тремя медианами на шесть равновеликих треугольников.

    Формулы медиан треугольника

    Формулы медиан треугольника через стороны

    ma = 1 2 √ 2 b 2 +2 c 2 — a 2

    mb = 1 2 √ 2 a 2 +2 c 2 — b 2

    mc = 1 2 √ 2 a 2 +2 b 2 — c 2

    Видео:Задача 6 №27932 ЕГЭ по математике. Урок 146Скачать

    Задача 6 №27932 ЕГЭ по математике. Урок 146

    Биссектрисы треугольника

    Сторона треугольник равна произведению радиуса описанной окружности

    Свойства биссектрис треугольника:

    Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

    Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

    Формулы биссектрис треугольника

    Формулы биссектрис треугольника через стороны:

    la = 2√ bcp ( p — a ) b + c

    lb = 2√ acp ( p — b ) a + c

    lc = 2√ abp ( p — c ) a + b

    где p = a + b + c 2 — полупериметр треугольника

    Формулы биссектрис треугольника через две стороны и угол:

    la = 2 bc cos α 2 b + c

    lb = 2 ac cos β 2 a + c

    lc = 2 ab cos γ 2 a + b

    Видео:9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать

    9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороны

    Высоты треугольника

    Сторона треугольник равна произведению радиуса описанной окружности

    Свойства высот треугольника

    Формулы высот треугольника

    ha = b sin γ = c sin β

    hb = c sin α = a sin γ

    hc = a sin β = b sin α

    Видео:найти радиус окружности, описанной вокруг треугольникаСкачать

    найти радиус окружности, описанной вокруг треугольника

    Окружность вписанная в треугольник

    Сторона треугольник равна произведению радиуса описанной окружности

    Свойства окружности вписанной в треугольник

    Формулы радиуса окружности вписанной в треугольник

    r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

    Видео:№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружностиСкачать

    №706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружности

    Окружность описанная вокруг треугольника

    Сторона треугольник равна произведению радиуса описанной окружности

    Свойства окружности описанной вокруг треугольника

    Формулы радиуса окружности описанной вокруг треугольника

    R = S 2 sin α sin β sin γ

    R = a 2 sin α = b 2 sin β = c 2 sin γ

    Видео:ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэСкачать

    ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэ

    Связь между вписанной и описанной окружностями треугольника

    Видео:Вписанные и описанные окружности. Геометрия 9 класс. Ключевая задача № 3.Скачать

    Вписанные и описанные окружности. Геометрия 9 класс. Ключевая задача № 3.

    Средняя линия треугольника

    Свойства средней линии треугольника

    Сторона треугольник равна произведению радиуса описанной окружности

    MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

    MN || AC KN || AB KM || BC

    Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

    Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

    Периметр треугольника

    Сторона треугольник равна произведению радиуса описанной окружности

    Периметр треугольника ∆ ABC равен сумме длин его сторон

    Видео:Вписанная и описанная окружность - от bezbotvyСкачать

    Вписанная и описанная окружность - от bezbotvy

    Формулы площади треугольника

    Сторона треугольник равна произведению радиуса описанной окружности

    Формула Герона

    S =a · b · с
    4R

    Видео:Формула радиуса вписанной окружности треугольника. Геометрия 9 классСкачать

    Формула радиуса вписанной окружности треугольника. Геометрия 9 класс

    Равенство треугольников

    Признаки равенства треугольников

    Первый признак равенства треугольников — по двум сторонам и углу между ними

    Второй признак равенства треугольников — по стороне и двум прилежащим углам

    Третий признак равенства треугольников — по трем сторонам

    Видео:Задача 6 №27900 ЕГЭ по математике. Урок 128Скачать

    Задача 6 №27900 ЕГЭ по математике. Урок 128

    Подобие треугольников

    Сторона треугольник равна произведению радиуса описанной окружности

    ∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

    где k — коэффициент подобия

    Признаки подобия треугольников

    Первый признак подобия треугольников

    Второй признак подобия треугольников

    Третий признак подобия треугольников

    Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

    Добро пожаловать на OnlineMSchool.
    Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

    Поделиться или сохранить к себе: