Сторона остроугольного треугольника является диаметром окружности

Сторона остроугольного треугольника является диаметром окружности

Задание 26. На стороне ВС остроугольного треугольника ABC (АВ ≠ АС) как на диаметре построена полуокружность, пересекающая высоту AD в точке М, AD = 80, MD = 64, Н — точка пересечения высот треугольника ABC. Найдите АН.

AD – высота треугольника ABC, значит, Сторона остроугольного треугольника является диаметром окружности. Учитывая, что MQ – хорда, с которой радиус окружности составляет 90º, то точка D делит MQ пополам и MD=DQ=64.

Сторона остроугольного треугольника является диаметром окружности

AM = AD-MD = 80-64=16,

AQ = AD+DQ = 80+64 = 144

По следствию из теоремы о касательной и секущей, имеем:

Сторона остроугольного треугольника является диаметром окружности

Треугольники AKH и ADC подобны по двум углам: Сторона остроугольного треугольника является диаметром окружности, а угол CAD – общий. Следовательно,

Видео:Геометрия. Задача. Треугольник. Окружность.Скачать

Геометрия.  Задача.  Треугольник.  Окружность.

Решение №1223 На стороне ВС остроугольного треугольника АВС (АВ ≠ АС) как на диаметре построена полуокружность …

На стороне ВС остроугольного треугольника АВС (АВ ≠ АС) как на диаметре построена полуокружность, пересекающая высоту АD в точке М, АВ = 80‚ МD = 64, Н – точка пересечения высот треугольника АВС. Найдите АН.

Источник: ОГЭ 2021 Ященко (36 вар)

Сторона остроугольного треугольника является диаметром окружности

Построим высоту BK, ВК⊥АС, ΔВKC прямоугольный и опирается на диаметр окружности, значит точка К лежит на окружности.
MQхорда окружности, диаметр ВС⊥MQ, значит хорда делится пополам в точке D:

MD = DQ = 64

Найдём АМ:

AM = AD – MD = 80 – 64 = 16

Найдём AQ:

AQ = AD + DQ = 80 + 64 = 144

По теореме о секущих:

AK·AC = AM·AQ
AK·AC = 16·144

ΔAKH и ΔADC подобны по двум углам: ∠AKH = ∠ADC = 90°, а ∠CAD – общий. Тогда стороны тоже подобны:

Видео:Геометрия Сторона AD четырехугольника ABCD является диаметром окружности, описанной около негоСкачать

Геометрия Сторона AD четырехугольника ABCD является диаметром окружности, описанной около него

Треугольник вписанный в окружность

Сторона остроугольного треугольника является диаметром окружности

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Определение

Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.

На рисунке 1 изображена окружность, описанная около
треугольника
и окружность, вписанная в треугольник.

ВD = FC = AE — диаметры описанной около треугольника окружности.

O — центр вписанной в треугольник окружности.

Сторона остроугольного треугольника является диаметром окружности

Видео:Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

Формулы

Радиус вписанной окружности в треугольник

r — радиус вписанной окружности.

  1. Радиус вписанной окружности в треугольник,
    если известна площадь и все стороны:

Радиус вписанной окружности в треугольник,
если известны площадь и периметр:

Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:

Радиус описанной окружности около треугольника

R — радиус описанной окружности.

  1. Радиус описанной окружности около треугольника,
    если известна одна из сторон и синус противолежащего стороне угла:

Радиус описанной окружности около треугольника,
если известны все стороны и площадь:

Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:

Площадь треугольника

S — площадь треугольника.

  1. Площадь треугольника вписанного в окружность,
    если известен полупериметр и радиус вписанной окружности:

Площадь треугольника вписанного в окружность,
если известен полупериметр:

Площадь треугольника вписанного в окружность,
если известен высота и основание:

Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:

Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:

[ S = fracab cdot sin angle C ]

Периметр треугольника

P — периметр треугольника.

  1. Периметр треугольника вписанного в окружность,
    если известны все стороны:

Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:

Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:

Сторона треугольника

a — сторона треугольника.

  1. Сторона треугольника вписанного в окружность,
    если известны две стороны и косинус угла между ними:

Сторона треугольника вписанного в
окружность, если известна сторона и два угла:

Средняя линия треугольника

l — средняя линия треугольника.

  1. Средняя линия треугольника вписанного
    в окружность, если известно основание:

Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:

Высота треугольника

h — высота треугольника.

  1. Высота треугольника вписанного в окружность,
    если известна площадь и основание:

Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:

[ h = b cdot sin alpha ]

Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:

Видео:ОГЭ 2019. Задание 17. Разбор задач. Геометрия. Окружность.Скачать

ОГЭ 2019.  Задание 17. Разбор задач. Геометрия. Окружность.

Свойства

  • Центр вписанной в треугольник окружности
    находится на пересечении биссектрис.
  • В треугольник, вписанный в окружность,
    можно вписать окружность, причем только одну.
  • Для треугольника, вписанного в окружность,
    справедлива Теорема Синусов, Теорема Косинусов
    и Теорема Пифагора.
  • Центр описанной около треугольника окружности
    находится на пересечении серединных перпендикуляров.
  • Все вершины треугольника, вписанного
    в окружность, лежат на окружности.
  • Сумма всех углов треугольника — 180 градусов.
  • Площадь треугольника вокруг которого описана окружность, и
    треугольника, в который вписана окружность, можно найти по
    формуле Герона.

Видео:ОГЭ задание 26Скачать

ОГЭ задание 26

Доказательство

Около любого треугольника, можно
описать окружность притом только одну.

Сторона остроугольного треугольника является диаметром окружности

окружность и треугольник,
которые изображены на рисунке 2.

окружность описана
около треугольника.

  1. Проведем серединные
    перпендикуляры — HO, FO, EO.
  2. O — точка пересечения серединных
    перпендикуляров равноудалена от
    всех вершин треугольника.
  3. Центр окружности — точка пересечения
    серединных перпендикуляров — около
    треугольника описана окружность — O,
    от центра окружности к вершинам можно
    провести равные отрезки — радиусы — OB, OA, OC.

окружность описана около треугольника,
что и требовалось доказать.

Подводя итог, можно сказать, что треугольник,
вписанный в окружность
— это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.

💥 Видео

ОГЭ 2021. Задание 24. Геометрическая задача на вычисление.Скачать

ОГЭ 2021. Задание 24. Геометрическая задача на вычисление.

Задача 6 №27900 ЕГЭ по математике. Урок 128Скачать

Задача 6 №27900 ЕГЭ по математике. Урок 128

№702. В окружность вписан треугольник ABC так, что АВ — диаметр окружности. Найдите углыСкачать

№702. В окружность вписан треугольник ABC так, что АВ — диаметр окружности. Найдите углы

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Геометрия. ОГЭ по математике. Задание 15Скачать

Геометрия. ОГЭ по математике. Задание 15

Как найти диаметр окружности, описанной около равнобедренного треугольникаСкачать

Как найти диаметр окружности, описанной около равнобедренного треугольника

ОГЭ без рекламы математика вариант 9 и 10 задача 25Скачать

ОГЭ без рекламы  математика вариант  9 и 10 задача 25

Треугольник и окружность // ФАКТ ДЛЯ ОГЭСкачать

Треугольник и окружность // ФАКТ ДЛЯ ОГЭ

№707. Угол, противолежащий основанию равнобедренного треугольника, равен 120°, боковая сторонаСкачать

№707. Угол, противолежащий основанию равнобедренного треугольника, равен 120°, боковая сторона

На катете ML прямоугольного треугольника KLM как на диаметре построена окружностьСкачать

На катете ML прямоугольного треугольника KLM как на диаметре построена окружность

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Геометрия На стороне BC остроугольного треугольника ABC ( AB ≠ AC ) как на диаметре построенаСкачать

Геометрия На стороне BC остроугольного треугольника ABC ( AB ≠ AC ) как на диаметре построена

Треугольник и окружность #shortsСкачать

Треугольник и окружность #shorts

Угол между биссектрисами острых углов прямоугольного треугольникаСкачать

Угол между биссектрисами острых углов прямоугольного треугольника
Поделиться или сохранить к себе: