Определение окружности центра радиуса хорды и диаметра 7 класс

Окружность

Окружность — это геометрическая фигура, образованная замкнутой кривой линией, все точки которой одинаково удалены от одной и той же точки.

Точка, от которой одинаково удалены все точки окружности, называется центром окружности. Центр окружности обычно обозначают большой латинской буквой O:

Определение окружности центра радиуса хорды и диаметра 7 класс

Окружность делит плоскость на две области — внутреннюю и внешнюю. Геометрическая фигура, ограниченная окружностью, — это круг:

Определение окружности центра радиуса хорды и диаметра 7 класс

Видео:Окружность. 7 класс.Скачать

Окружность. 7 класс.

Построение окружности циркулем

Для построения окружности используют специальный прибор — циркуль:

Определение окружности центра радиуса хорды и диаметра 7 класс

Установим циркулю произвольный раствор (расстояние между ножками циркуля) и, поставив его ножку с остриём в какую-нибудь точку плоскости (например, на листе бумаги), станем вращать циркуль вокруг этой точки. Другая его ножка, снабжённая карандашом или грифелем, прикасающимся к плоскости, начертит на плоскости замкнутую линию — окружность:

Определение окружности центра радиуса хорды и диаметра 7 класс

Видео:Радиус Хорда ДиаметрСкачать

Радиус Хорда Диаметр

Радиус, хорда и диаметр

Радиус — это отрезок, соединяющий любую точку окружности с центром. Радиусом также называется расстояние от точки окружности до её центра:

Определение окружности центра радиуса хорды и диаметра 7 класс

Все радиусы окружности имеют одну и ту же длину, то есть они равны между собой. Радиус обозначается буквой R или r.

Хорда — это отрезок, соединяющий две точки окружности. Хорда, проходящая через центр, называется диаметром окружности.

Определение окружности центра радиуса хорды и диаметра 7 класс

Диаметр обозначается буквой D. Диаметр окружности в два раза больше её радиуса:

Дуга — это часть окружности, ограниченная двумя точками. Любые две точки делят окружность на две дуги:

Определение окружности центра радиуса хорды и диаметра 7 класс

Чтобы различать дуги, на которые две точки разделяют окружность, на каждую из дуг ставят дополнительную точку:

Определение окружности центра радиуса хорды и диаметра 7 класс

Для обозначения дуг используется символ Определение окружности центра радиуса хорды и диаметра 7 класс:

  • Определение окружности центра радиуса хорды и диаметра 7 классAFB — дуга с концами в точках A и B, содержащая точку F;
  • Определение окружности центра радиуса хорды и диаметра 7 классAJB — дуга с концами в точках A и B, содержащая точку J.

О хорде, которая соединяет концы дуги, говорят, что она стягивает дугу.

Определение окружности центра радиуса хорды и диаметра 7 класс

Хорда AB стягивает дуги Определение окружности центра радиуса хорды и диаметра 7 классAFB и Определение окружности центра радиуса хорды и диаметра 7 классAJB.

Видео:Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

Окружность

Окружность — это геометрическая фигура, которая состоит из
всех точек плоскости, расположенных на заданном расстоянии
от данной точки.

Для решения задач, связанных с окружность, нужно знать её свойства.
Свойства окружности, как и любой другой фигуры зависят от
формы, размеров и так далее. В этой статье мы расскажем вам о
свойства окружности и об основных терминах,
таких как: хорда, радиус, дуга и так далее.

Определение окружности центра радиуса хорды и диаметра 7 класс

На рисунке 1 изображена окружность, где O — центр окружности,
PK — хорда, AO — радиус, АС — диаметр, DEF — дуга.

Центром окружности называется точка откуда берет начало радиус.
Расположена эта точка в центре окружности. Если внутри окружности
точка расположена на равном расстоянии от всех точек плоскости,
значит это центр окружности. O — центр окружности.

Отрезком соединяющим центр окружности и любую из точек плоскости
называют радиусом. Если отрезок внутри окружности соединяет центр
окружности с любой из точек плоскости, значит этот отрезок — радиус.
CO — радиус.

Отрезок, который соединяет две точки окружности, называется хордой.
Если отрезок внутри окружности соединяет любые две точки окружности,
значит этот отрезок — хорда. PK — хорда.

Отрезок, соединяющий две любые точки окружности и проходящий через
центр окружности, называется диаметром. Если отрезок внутри окружности
соединяет любые две точки окружности и проходит через центр окружности,
значит этот отрезок диаметр. Диаметр в два раза больше радиуса. AC — диаметр.

У диаметра есть середина, которая является центром окружности. Две любые
точки окружности делят окружность на две части. Каждая из частей называется
дугой окружности.

Если две любые точки окружности, делят её на две части,
значит эти части — дуги. DEF — дуга.

Для того, чтобы изобразить окружность на чертеже используют циркуль.
Чтобы провести окружность на местности, можно воспользоваться веревкой.

Кругом называется часть плоскости, которая ограничена окружностью.
Если часть плоскости ограничивает окружность, значит эта часть плоскости — круг.

Сумма углов окружности равна 360°.

Видео:Радиус и диаметрСкачать

Радиус и диаметр

Геометрия. 7 класс

Конспект урока

Окружность. Задачи на построение

Перечень рассматриваемых вопросов:

  • Геометрическое место точек, примеры ГМТ.
  • Изображение на рисунке окружности и ее элементов.
  • Решение задач на построение.
  • Выполнение построений прямого угла, отрезка, угла равного данному, биссектрисы угла, перпендикулярных прямых, середины отрезка с помощью циркуля и линейки.

Радиус окружности – отрезок соединяющий центр окружности с какой-либо точкой окружности.

Окружность – это геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии от данной точки.

Хорда – отрезок, соединяющий две точки окружности.

Диаметр – хорда, проходящая через центр окружности.

  1. Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.
  1. Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
  2. Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
  3. Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
  4. Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
  5. Иченская М.А. Геометрия: Самостоятельные и контрольные работы 7–9 классы. // Иченская М.А. – М.: Просвещение, 2019. – 144 с.

Теоретический материал для самостоятельного изучения.

Ранее мы узнали некоторые геометрические фигуры, например, угол, отрезок, треугольник, научились их строить и измерять. Сегодня мы введём определение ещё одной фигуры – окружности, рассмотрим её элементы и выполним построения геометрических фигур с помощью циркуля и линейки.

Для начала дадим определение геометрической фигуры, называемой окружностью.

Окружность – это геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии от данной точки.

Определение окружности центра радиуса хорды и диаметра 7 класс

Но можно использовать и другое определение окружности.

Окружность ‑ это геометрическое место точек, удалённых на одно и то же расстояние от точки, называемой центром окружности. Это расстояние называют радиусом окружности. В нашем случае точки О.

При этом стоит пояснить, что геометрическое место точек – это фигура речи, употребляемая в математике для определения геометрической фигуры, как множества всех точек, обладающих некоторым свойством.

Вспомним элементы окружности.

Радиус окружности – отрезок соединяющий центр окружности с какой-либо точкой окружности.

Определение окружности центра радиуса хорды и диаметра 7 класс

По определению окружности все её радиусы имеют одну и ту же длину. OM = OA

Отрезок, соединяющий две точки окружности, называется хордой.

Определение окружности центра радиуса хорды и диаметра 7 класс

Хорда, проходящая через центр окружности, называется диаметром.

Определение окружности центра радиуса хорды и диаметра 7 класс

O – середина диаметра.

Любые две точки окружности делят её на две части. Каждая из этих частей называется дугой окружности.

Определение окружности центра радиуса хорды и диаметра 7 класс

AMB, ALB – дуги окружности.

Построим окружность радиусом 3 см. Для этого поставим точку О. Возьмём циркуль и выставим с помощью линейки расстояние между ножками циркуля, равное 3 см. Поставим иголочку циркуля в точку О и построим окружность, вращая ножку циркуля с грифелем вокруг этой точки. Грифель описывает замкнутую кривую линию, которую называют окружностью.

Часть плоскости, которая лежит внутри окружности, вместе с самой окружностью, называют кругом, т. е. окружность ‑ граница круга.

Определение окружности центра радиуса хорды и диаметра 7 класс

Итак, мы можем с помощью циркуля строить окружность, но с его помощью можно построить и угол равный данному. Для построения воспользуемся ещё и линейкой.

Определение окружности центра радиуса хорды и диаметра 7 класс

Построить: EOМ = A.

1. Окр. (A; r), r – произвольный радиус.

2. Окр. (A; r) ∩ AB = B.

3. Окр. (A; r) ∩ AС = С.

Определение окружности центра радиуса хорды и диаметра 7 класс

4. Окр. (O; r) ∩ OM = D.

5. Окр. (D; BС) ∩ Окр. (O; r) = E

Определение окружности центра радиуса хорды и диаметра 7 класс

6. OЕ, ЕОD = BAC (из равенства ∆ОЕD и ∆ABC). EOM – искомый.

Теперь выполним построение биссектрисы угла.

Определение окружности центра радиуса хорды и диаметра 7 класс

Построить: AE – биссектриса CAB.

  1. Окр. (A; r), r – произвольный радиус.

Определение окружности центра радиуса хорды и диаметра 7 класс

  1. Окр. (A; r) ∩ AB = B.
  2. Окр. (A; r) ∩ AC = C.
  3. Окр. (C; CB) ∩ Окр. (B; CB) = E.
  4. AE – искомая биссектриса BAC, т. к. ABE =CBE (из равенства ∆ACE и ∆ABE).

Рассмотрим ещё одно построение с помощью циркуля и линейки. Построим середину отрезка АВ.

Определение окружности центра радиуса хорды и диаметра 7 класс

Для этого построим две окружности с центрами на концах отрезка , т. е. в точках А и В. Окружности пересекутся в точках Р и Q. Проведём прямую через точки Р и Q. Прямая РQ пересечёт прямую АВ в точке О, которая и будет являться искомой серединой отрезка АВ. Докажем это. Для этого рассмотрим ∆APQ и ∆BPQ. Они равны по трём сторонам, следовательно, ∠1 = ∠2, поэтому РО– биссектриса равнобедренного ∆АВР, а соответственно РО ещё и медиана. Следовательно, точка О – середина отрезка АВ.

Определение окружности центра радиуса хорды и диаметра 7 класс

Разбор заданий тренировочного модуля.

№ 1. АВ и СК – диаметры окружности, с центром в точке О. По какому признаку равенства треугольников равны треугольники АОС и ОКВ?

Определение окружности центра радиуса хорды и диаметра 7 класс

Так как О – центр окружности, то точка О делит диаметры пополам, следовательно отрезки АО, ОВ, ОС, ОК равны. ∠СОА = ∠КОВ (как вертикальные). Поэтому треугольники АОС и ОКВ равны по первому признаку равенства треугольников (по двум сторонам и углу между ними).

Ответ: 1 признак равенства треугольников.

№ 2. На рисунке O – центр окружности, АВ – диаметр окружности. Отрезки АD и ВС, перпендикулярны к отрезку АВ. АВ = 8 см, ОС = 5 см, СВ = 3 см. Чему равен периметр ∆AOD?

Определение окружности центра радиуса хорды и диаметра 7 класс

Периметр треугольника AOD равен сумме сторон АО, AD, DO. Найдём эти стороны.

По условию O – центр окружности, то она делит диаметр пополам, следовательно отрезок АО равен отрезку ОВ, т. е. АО = АВ:2 = 8 см :2 = 4 см.

По условию отрезки АD и ВС, перпендикулярны к отрезку АВ, следовательно ∠СВО = ∠ОАD = 90°, ∠АОD = ∠СОВ (как вертикальные). Поэтому ∆АОD = ∆СОВ (по 2 признаку равенства треугольников). Следовательно, AD = СВ = 3 см, DO = ОС = 5 см.

Р∆AOD = АО + AD + DO = 4 см + 3 см + 5 см = 12 см.

🔍 Видео

Геометрия. 7 класс. Окружность. Радиус, диаметр, хорда. Татьяна Николаевна. Profi-Teacher.ruСкачать

Геометрия. 7 класс. Окружность. Радиус, диаметр, хорда. Татьяна Николаевна. Profi-Teacher.ru

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

7 класс, 21 урок, ОкружностьСкачать

7 класс, 21 урок, Окружность

№144. Отрезки АВ и CD — диаметры окружности. Докажите, что: а) хорды BD и АС равны; б) хорды AD и ВССкачать

№144. Отрезки АВ и CD — диаметры окружности. Докажите, что: а) хорды BD и АС равны; б) хорды AD и ВС

🌟 ВСЯ ГЕОМЕТРИЯ 🌟 7 класс 🧐ТЕОРЕМЫ 📖ПОВТОРЕНИЕ Треугольники Окружность Секущая Угол Хорда РадиусСкачать

🌟 ВСЯ ГЕОМЕТРИЯ 🌟 7 класс 🧐ТЕОРЕМЫ 📖ПОВТОРЕНИЕ Треугольники Окружность Секущая Угол Хорда Радиус

Геометрия. 7 класс. Определения. Часть 3. Окружность.Скачать

Геометрия. 7 класс. Определения. Часть 3. Окружность.

Окружность и круг. Центр, радиус, диаметр, хорда, дуга, сектор и длина окружности, площадь круга.Скачать

Окружность и круг. Центр, радиус, диаметр, хорда, дуга, сектор и длина окружности, площадь круга.

Геометрия 7 класс (Урок№16 - Окружность. Задачи на построение.)Скачать

Геометрия 7 класс (Урок№16 - Окружность. Задачи на построение.)

Как найти центр и радиус нарисованной окружности #математика #егэ2023 #школа #fyp #shortsСкачать

Как найти центр и радиус нарисованной окружности #математика #егэ2023 #школа #fyp #shorts

Свойство диаметра окружности. 7 класс.Скачать

Свойство диаметра окружности. 7 класс.

Окружность и круг, 6 классСкачать

Окружность и круг, 6 класс

Окружность круг хорда диаметр радиус дуга сектор сегментСкачать

Окружность   круг   хорда   диаметр   радиус   дуга   сектор   сегмент

Расчет сегмента окружности по хорде и длине цилиндрической поверхности (трансцендентное уравнение)Скачать

Расчет сегмента окружности по хорде и длине цилиндрической поверхности (трансцендентное уравнение)

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

ОКРУЖНОСТЬ (центр, радиус, хорда, диаметр) ЧАСТЬ 1Скачать

ОКРУЖНОСТЬ (центр, радиус, хорда, диаметр) ЧАСТЬ 1

Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.
Поделиться или сохранить к себе: