Способ плоскопараллельного перемещения треугольника

Плоскопараллельное перемещение треугольника

Плоскопараллельное перемещение треугольника ΔABC используемое для преобразования его ортогональных проекций, соответствующих плоскости общего положения δ, в проекции δ2 // H для получения натуральной величины сторон и углов треугольника ΔABC требует выполнения следующих построений: — горизонтали (или фронтали) плоскости AD;

Способ плоскопараллельного перемещения треугольника

— перевода горизонтали плоскости в положение A1D1 ⊥ V: — на направлении перпендикуляра к плоскости V проведенном на свободном месте чертежа откладываем величину A`D` = A`1D`1 — перестроение других точек проекции ΔA`B`C` на новое положение ΔA`1B`1C`1: — точку B`1 дает пересечение дуг R1 = /A`B`/ и R2 = /D`B`/; — сторону B`D` продолжим до пересечения

Способ плоскопараллельного перемещения треугольника

с дугой радиуса R3 = /B`C`/; — проекции вершин треугольника в новом положении соединяем прямыми линиями;

Способ плоскопараллельного перемещения треугольника

— перемещения фронтальных проекций ΔA»B»C» к новому положению Δ111, происходящего в плоскостях уровня β1V, β2V и β3V параллельных плоскости H;

Способ плоскопараллельного перемещения треугольника

— новое положение проекций определится на пересечении траекторий их движения в плоскостях уровня с вертикальными линиями проекционной связи; — перемещения фронтальной проекции Δ111 в положение параллельное H,

Способ плоскопараллельного перемещения треугольника

которое выполняем переводом прямой В»1С»1 — фронтальной проекции ΔA1B1C1 в положение параллельное оси x: В»2С»2 // x; — перемещения горизонтальных проекций ΔA`1B`1C`1 к новому положению ΔA`2B`2C`2, происходящего в плоскостях уровня α1H, α2H и α3H параллельных плоскости V;

Способ плоскопараллельного перемещения треугольника

— новое положение проекций определится на пересечении траекторий их движения в плоскостях уровня с вертикальными линиями проекционной связи: проекция ΔA`2B`2C`2 соответствует натуральной величине треугольника ΔABC.

Содержание
  1. Метод плоскопараллельного перемещения
  2. Определение натуральной величины треугольника
  3. Определение расстояния между параллельными прямыми
  4. Решение метрических задач в начертательной геометрии с примерами
  5. Решение метрических задач методами преобразовании проекций
  6. Четыре основных задачи преобразовании проекций
  7. Способ вращения
  8. Способ плоскопараллельного перемещения
  9. Способ замены плоскостей проекций
  10. Способ плоскопараллельного перемещения
  11. Способ замены плоскостей проекций
  12. Метрические задачи
  13. Определение расстояний между геометрическими объектами
  14. Перпендикулярность плоскостей
  15. Определение углов между прямой и плоскостью и между двумя плоскостями
  16. Примеры метрических задач
  17. Теорема о проекциях прямого угла
  18. Линии наибольшего наклона плоскости
  19. Перпендикулярность прямой и плоскости
  20. Взаимная перпендикулярность плоскостей
  21. Определение метрических задач
  22. Определение длины отрезка
  23. Определение площади треугольника
  24. Проецирование прямого угла
  25. Перпендикулярность прямых и плоскостей
  26. Перпендикулярность прямой и плоскости
  27. Расстояние от точки до плоскости
  28. Перпендикулярность плоскостей
  29. Определение натуральных величин геометрических элементов
  30. Определение расстояния между геометрическими элементами (образами)
  31. Определение углов наклона геометрических элементов к плоскостям проекций H и V
  32. 📺 Видео

Видео:Построение натуральной величины треугольника методом вращенияСкачать

Построение натуральной величины треугольника методом вращения

Метод плоскопараллельного перемещения

В начертательной геометрии метод плоскопараллельного перемещения используется, как правило, для определения натуральных величин плоских фигур, отрезков и углов.

Свойства плоскопараллельного перемещения:

  1. При перемещении любой фигуры параллельно плоскости проекции, проекция фигуры на эту плоскость остается неизменной.
  2. При перемещении точки параллельно горизонтальной плоскости проекции, её фронтальная проекция движется по прямой, параллельной оси X. На рисунке ниже точки C» и D», следуя этому свойству, заняли положение C»1 и D»1.
  3. При перемещении точки параллельно фронтальной плоскости проекции, её горизонтальная проекция движется по прямой, параллельной оси X.

Рассмотрим перевод произвольно расположенного отрезка CD в положение, параллельное горизонтальной плоскости проекций П2.

Способ плоскопараллельного перемещения треугольника

  • Используя первое свойство параллельного перемещения, на любом свободном месте чертежа строим отрезок C’1D’1 = C’D’.
  • По линиям связи определяем недостающие проекции C»1 и D»1. Стрелками показано перемещение точек C» и D» параллельно оси X в соответствии со вторым свойством рассматриваемого метода.

Следующий рисунок иллюстрирует перевод отрезка MN в проецирующее положение по отношению к фронтальной плоскости проекций П2. В общем случае для решения подобной задачи необходимо дважды воспользоваться методом плоскопараллельного перемещения.

Способ плоскопараллельного перемещения треугольника

  • После первого преобразования отрезок MN займет положение параллельно плоскости П1. Сначала строится M»11 = M»N» на произвольном месте чертежа, после чего по линиям связи находятся недостающие проекции M’1 и N’1.
  • Второе преобразование заключается в параллельном переносе горизонтальной проекции отрезка M’1N’1 в положение M’2N’2, перпендикулярное оси X. После этого точки M»2 = N»2 определяются по линиям связи.

Видео:Нахождение истинной формы плоской фигуры методом плоско параллельного перемещенияСкачать

Нахождение истинной формы плоской фигуры методом плоско параллельного перемещения

Определение натуральной величины треугольника

Рассмотрим порядок плоскопараллельного перемещения треугольника ABC с целью определения его натуральной величины.

Способ плоскопараллельного перемещения треугольника

  1. Через точку С треугольника ABC проводим горизонталь CD. Находим её недостающие проекции.
  2. Переводим ABC в положение, перпендикулярное фронтальной плоскости проекций. Для этого строим C’1D’1 = C’D’ перпендикулярно оси X. В соответствии с первым свойством плоскопараллельного перемещения достраиваем треугольник A’1B’1C’1 = A’B’C’. По линиям связи определяем точки A»1, B»1, C»1.
  3. Перемещаем проекцию A»111 треугольника ABC в положение A»222, параллельное оси X, соблюдая равенство A»222 = A»111. По линиям связи определяем точки A’2, B’2, C’2. Теперь треугольник ABC расположен параллельно горизонтальной плоскости проекций и проецируется на неё в натуральную величину A’2B’2C’2.

Видео:Определение истинной величины треугольника АВС. Метод плоско-параллельного перемещенияСкачать

Определение истинной величины треугольника АВС. Метод плоско-параллельного перемещения

Определение расстояния между параллельными прямыми

Расстояние между двумя параллельными прямыми равно длине перпендикуляра, опущенного из произвольной точки первой прямой на вторую прямую. Рассмотрим, как указанное расстояние определяется на практике с помощью метода плоскопараллельного перемещения.

Способ плоскопараллельного перемещения треугольника

Путем двух последовательных преобразований прямые a и b переводятся в положение, перпендикулярное горизонтальной плоскости. Таким образом, они проецируются на неё в точки A’2 и B’2, расстояние между которыми является искомым. Показанные на рисунке величины d1 и d2 являются вспомогательными для выполнения построений согласно свойствам плоскопараллельного перемещения.

Видео:Определение натуральной величины треугольника способом плоскопараллельного перемещения #решениезадачСкачать

Определение натуральной величины треугольника способом плоскопараллельного перемещения #решениезадач

Решение метрических задач в начертательной геометрии с примерами

Содержание:

К метрическим задачам относятся задачи на определение натуральной величины отрезков, расстояний углов, площадей плоских фигур.

Определение натуральной величины отрезка и углов наклона к плоскостям проекций методом прямоугольною треугольника Натуральная величина отрезка равна гипотенузе прямоугольного треугольника, одним катетом которого является проекция отрезка, а вторым — разность расстояний концов отрезка от той плоскости, на которой ведется построение. При этом угол между гипотенузой и катетом проекций является углом наклона отрезка к той плоскости, ряльной величины выполнено на горизонтальной проекции. Поэтому одним катетом прямоугольного треугольника, является горизонтальная проекцияСпособ плоскопараллельного перемещения треугольника

Способ плоскопараллельного перемещения треугольника

Если необходимо определить угол наклона отрезка АВ к плоскости Способ плоскопараллельного перемещения треугольникато построение прямоугольного треугольника ведется на фронтальной проекции.

Видео:Начертательная геометрия:13_Способ плоскопараллельного перемещения. ПрямаяСкачать

Начертательная геометрия:13_Способ плоскопараллельного перемещения. Прямая

Решение метрических задач методами преобразовании проекций

Положении геометрических образов, при которых расстоянии и углы не искажаются на плоскостях проекций

Метрические характеристики объектов на чертежах не искажаются, если геометрические образы занимают частное положение относительно плоскостей проекций.

Приведем некоторые из них.

1. Прямая проецируется в натуральную величину, если она параллельна плоскости проекций (рисунок 3.2).

Способ плоскопараллельного перемещения треугольника

Способ плоскопараллельного перемещения треугольника— угол наклона к плоскостиСпособ плоскопараллельного перемещения треугольника

2. Расстояние от точки до прямой проецируется в натуральную величину, если прямая проецирующая (рисунок 3.3).

Способ плоскопараллельного перемещения треугольника

3. Расстояние между параллельными прямыми проецируется в натуральную величину, если прямые проецирующие (рисунок 3.4).

Способ плоскопараллельного перемещения треугольника

4. Расстояние между скрещивающимися прямыми проецируется в натуральную величину, если одна из прямых проецирующая (рисунок 3.5).

Способ плоскопараллельного перемещения треугольника

5. Угол между плоскостями (двугранный угол) проецируется в натуральную величину, если ребро угла проецирующее (рисунок 3.6).

Способ плоскопараллельного перемещения треугольника

6. Угол наклона плоскости к плоскости проекций проецируется в натуральную величину, если плоскость проецирующая (рисунок 3.7) Способ плоскопараллельного перемещения треугольника

7. Расстояние от точки до плоскости проецируется в натуральную величину, если плоскость проецирующая (рисунок 3.8)

Способ плоскопараллельного перемещения треугольника

8. Любая плоская фигура проецируется в натуральную величину, если она параллельна плоскости проекций (рисунок 3.9а,б)

Способ плоскопараллельного перемещения треугольника

Таким образом, для решения метрических задач целесообразно данный объект привести в частное положение с тем, чтобы на одной из новых проекций получить более простое решение задачи.

Для такого перехода и служат способы преобразования проекций.

Существует несколько способов преобразовании проекций: способ вращения вокруг осей перпендикулярных плоскостям проекций, способ плоскопараллельного перемещения, способ замены плоскостей проекций и др.

Четыре основных задачи преобразовании проекций

Этими способами решаются четыре основные задачи:

  • Задача 1. Прямую общего положения преобразуем в линию уровня (одно преобразование).
  • Задача 2. Прямую общего положения преобразуем в проецирующую (два преобразования)
  • Задача 3. Плоскость общего положения преобразуем в проецирующую (одно преобразование)
  • Задача 4. Плоскость общего положения преобразуем в плоскость уровня (два преобразования)

Решение 1-ой и 2-ой задачи преобразовании проекций методом вращении, плоскопараллельного перемещении и замены плоскостей проекций

Способ вращения

Способ вращения заключается в том, что геометрические образы вращаются вокруг осей перпендикулярных плоскостям проекций до занятия ими какого-либо частного положения относительно плоскостей проекций. При этом одна проекция точки перемещается по окружности, вторая — но прямой параллельной оси проекций.

На рисунке 3.10 вокруг осиСпособ плоскопараллельного перемещения треугольникавращаем отрезок ЛВ до положения параллельного плоскостиСпособ плоскопараллельного перемещения треугольника(1 задача). Далее вращением вокруг осиСпособ плоскопараллельного перемещения треугольникаполученный отрезок до положения перпендикулярного плоскости Способ плоскопараллельного перемещения треугольникаНа Способ плоскопараллельного перемещения треугольникаотрезок с проецируется в точку Способ плоскопараллельного перемещения треугольника

Способ плоскопараллельного перемещения треугольника

Способ плоскопараллельного перемещения

Способ плоскопараллельного перемещения является разновидностью способа вращения (вращение без закрепленных осей), т.е. положение объекта можно преобразовывать путем перемещения его параллельно одной плоскости проекций, одновременно изменяя его положение относительно другой плоскости проекций до занятия им какого-либо частного положения.

На рисунке 3.11 сначала АВ переводим из общего положения в положение горизонтальное. При этом Способ плоскопараллельного перемещения треугольникадолжно быть равно по величина Способ плоскопараллельного перемещения треугольниканаходим в пересечении вертикальных линий связи и линий Способ плоскопараллельного перемещения треугольникапараллельных оси Способ плоскопараллельного перемещения треугольника(1 задача). Далее отрезок Способ плоскопараллельного перемещения треугольникаперемещаем до положения перпендикулярного оси Способ плоскопараллельного перемещения треугольникаПри этом Способ плоскопараллельного перемещения треугольникаНа фронтальной проекции отрезок с проецируется в точку Способ плоскопараллельного перемещения треугольника(2 задача).

Способ плоскопараллельного перемещения треугольника

Способ плоскопараллельного перемещения треугольника

Способ замены плоскостей проекций

Сущность способа замены плоскостей проекций заключается в том, что старая система плоскостей проекций заменяется на новую, с таким расчетом, чтобы относительно новой системы плоскостей, геометрический образ занял какое-то частное положение. При этом нужно помнить, что линии связи будут перпендикулярны относительно новой оси проекций и расстояния от новой оси проекций до новой проекции точки равно расстоянию от старой проекции точки до старой оси.

На рисунке 3.12 произведена первая замена плоскость Способ плоскопараллельного перемещения треугольниказаменена на новую фронтальную плоскость Способ плоскопараллельного перемещения треугольникапараллельную прямой АВ. При этом новая ось Способ плоскопараллельного перемещения треугольникапроводится параллельно проекции Способ плоскопараллельного перемещения треугольникаЛинии связи проводятся перпендикулярно оси Способ плоскопараллельного перемещения треугольникаи на них от Способ плоскопараллельного перемещения треугольникаоткладываются координаты z точек А и В (1 задача).

Способ плоскопараллельного перемещения треугольника

Далее прямую АВ преобразуем в проецирующую. Для этого проводим новую ось Способ плоскопараллельного перемещения треугольникаперпендикулярно проекцииСпособ плоскопараллельного перемещения треугольника. Т.к. Способ плоскопараллельного перемещения треугольникапараллельна оси Способ плоскопараллельного перемещения треугольника, расстояние до проекций Способ плоскопараллельного перемещения треугольникабудет одинаковое и прямая спроецируется в точку Способ плоскопараллельного перемещения треугольника(2 задача)

Решение 3-ой и 4-ой задачи преобразовании проекций методом плоскопараллельного перемещения и замены плоскостей проекций

Так как метод вращения является более громоздким, рассмотрим решение 3-ей и 4-ой задачи преобразования методом плоскопараллельного перемещения и методом замены плоскостей проекций.

Способ плоскопараллельного перемещения

Способ плоскопараллельного перемещения треугольника

Для того чтобы плоскость из общего положения перевести в проецирующее, нужно иметь ввиду, что при этом ее горизонталь или фронталь должна быть перпендикулярна плоскости проекций. Поэтому на рисунке 3.13 проведена горизонталь Способ плоскопараллельного перемещения треугольникаДалее Способ плоскопараллельного перемещения треугольникарасполагаем перпендикулярно оси Способ плоскопараллельного перемещения треугольникаОткладываем на ней отрезок Способ плоскопараллельного перемещения треугольникаи циркулем строим треугольник Способ плоскопараллельного перемещения треугольникаравный по величине Способ плоскопараллельного перемещения треугольникаНа фронтальной проекции треугольник проецируется в линию (3 задача).

Чтобы плоскость треугольника перевести в положение плоскости уровня, достаточно полученную фронтальную проекцию Способ плоскопараллельного перемещения треугольникарасположить параллельно оси Способ плоскопараллельного перемещения треугольникапри этом на горизонтальной проекции треугольник проецируется в натуральную величину (4-я задача)

Способ замены плоскостей проекций

При решении задачи методом замены (рисунок 3.14) новую ось Способ плоскопараллельного перемещения треугольникапроводим перпендикулярно горизонтали Способ плоскопараллельного перемещения треугольникатогда на новую фронтальную плоскость Способ плоскопараллельного перемещения треугольникатреугольник спроецируется в линию, т.е. станет перпендикулярным (3-я задача). Чтобы плоскость перевести в положение плоскости уровня, необходимо новую ось Способ плоскопараллельного перемещения треугольникапровести параллельно плоскости Способ плоскопараллельного перемещения треугольникаНа новую плоскость Способ плоскопараллельного перемещения треугольникатреугольник спроецируется в натуральную величину.

Способ плоскопараллельного перемещения треугольника

Для того, чтобы методами преобразования решить любую метрическую задачу, необходимо определить какую из четырех основных задач преобразования необходимо решать в каждом конкретном случае.

Видео:Начертательная геометрия. 3 урок. Метод преобразования плоскостей и плоско-параллельного перемещенияСкачать

Начертательная геометрия. 3 урок. Метод преобразования плоскостей и плоско-параллельного перемещения

Метрические задачи

Метрические задачи — это задачи на определение линейных или угловых размеров геометрических объектов, а также расстояний и углов между ними.

Главным вопросом метрических задач является вопрос о построении перпендикуляра к прямой или плоскости. Построение взаимно перпендикулярных прямых было рассмотрено ранее.

Из элементарной геометрии известно, что прямая перпендикулярна к плоскости, если она перпендикулярна двум пересекающимся прямым, принадлежащим этой плоскости. В качестве этих пересекающихся прямых наиболее целесообразно использовать горизонталь и фронталь плоскости. Это объясняется тем, что только в этом случае прямой угол будет проецироваться в натуральную величину на соответствующие плоскости проекций. На рисунке 5.1 приведен пространственный чертеж, на котором из плоскости а (из точки А) восстановлен перпендикуляр АВ. Из приведенного изображения можно выяснить методику построения проекций перпендикуляра к плоскости: горизонтальная проекция перпендикуляра к плоскости проводится перпендикулярно горизонтальной проекции горизонтали или горизонтальному следу плоскости, а фронтальная проекция перпендикуляра проводится перпендикулярно фронтальной проекции фронтали или фронтальному следу плоскости. Таким образом, необходимо выполнить следующий алгоритм проведения проекций перпендикуляра к плоскости:

Способ плоскопараллельного перемещения треугольника

Способ плоскопараллельного перемещения треугольника

Построение перпендикуляра к плоскость и восстановление перпендикуляра из плоскости называется прямой задачей, а построение плоскости, перпендикулярной к прямой — обратной задачей. Обе задачи решаются по одному и тому же вышеописанному алгоритму. При этом плоскость, перпендикулярную заданной прямой, можно задать следами или пересекающимися горизонталью и фронталью.

На рисунке 5.2 показано решение прямой (а) и обратной (б) задач. В прямой задаче из точки A треугольника AВС восстановлен перпендикуляр, в обратной задаче через точку К проведена плоскость, перпендикулярная прямой АВ. Плоскость задана пересекающимися горизонталью и фронталью.

Здесь же приведены примеры прямой и обратной задач, если плоскость задана следами. В прямой задаче (в) из точки Л построен перпендикуляр на плоскость, в обратной (г) — через точку К проведена плоскость перпендикулярно прямой АВ. Способ плоскопараллельного перемещения треугольника

Определение расстояний между геометрическими объектами

Среди этих задач можно выделить следующие задачи: расстояние от точки до плоскости, расстояние от точки до прямой, расстояние между двумя параллельными прямыми, расстояние между двумя скрещивающимися прямыми, расстояние между двумя параллельными плоскостями и другие. В общем случае все задачи сводятся к определению расстояний между двумя точками.

Чтобы определить расстояние от точки до плоскости, необходимо выполнить ряд логических действий:

  1. Из точки опустить перпендикуляр на заданную плоскость;
  2. Найти точку встречи перпендикуляра с плоскостью;
  3. Определить НВ расстояния между заданной и найденной точками.

Задача на определение расстояния от точки до прямой решается по следующему плану:

  1. Через точку к провести плоскость, перпендикулярную заданной прямой;
  2. Найти точку встречи М заданной прямой с проведенной плоскостью;
  3. Соединить полученные точки (это будет перпендикуляр из точки на прямую);
  4. Определить НВ перпендикуляра.

Пространственная модель решения второй задачи представлена на рисунке 5.3. Рассмотренная задача относится также к задачам на перпендикулярность двух прямых.

Способ плоскопараллельного перемещения треугольника

Другие упомянутые задачи на определение расстояний легче решаются методами преобразования эпюра, которые будут рассмотрены в последующих разделах.

Перпендикулярность плоскостей

Плоскость перпендикулярна другой плоскости, если она содержит прямую, перпендикулярную другой плоскости (рисунок 5.4а). Таким образом, для того, чтобы провести плоскость, перпендикулярную другой, необходимо сначала провести перпендикуляр к заданной плоскости, а затем через него провести искомую плоскость. На рисунке 5.46 представлена задача: через точку К провести плоскость, перпендикулярную плоскости треугольника AВС. Искомая плоскость задана двумя пересекающимися прямыми, одна из которых перпендикулярна заданной плоскости.

Способ плоскопараллельного перемещения треугольника

Если две плоскости являются одноименными плоскостями частного положения (например, горизонтально- или фронтально-проецирующими), то при перпендикулярности плоскостей их собирательные следы будут перпендикулярны друг другу (рисунок 5.4в,г).

Если плоскости являются плоскостями общего положения, то при их перпендикулярности одноименные следы не будут взаимно перпендикулярны. Другими словами, перпендикулярность одноименных следов плоскостей общего положения не является достаточным условием для перпендикулярности самих плоскостей.

Определение углов между прямой и плоскостью и между двумя плоскостями

Определение углов между геометрическими объектами является трудоемкой задачей, если её решать традиционными геометрическими способами. Так, например, задачу на определение угла между прямой и плоскостью (рисунок 5.5) можно решить способом, алгоритм которого содержит следующие операции:

  1. Определить точку встречи прямой АВ с плоскостью а;
  2. Из точки В построить перпендикуляр на плоскость;
  3. Найти точку встречи перпендикуляра с плоскостью;
  4. Точки К и N соединить и определить НВ угла BKN.

Способ плоскопараллельного перемещения треугольника

Однако задача может быть значительно упрощена, если использовать способ решения задачи с помощью дополнительного угла. Дополнительным углом назовем угол между заданной прямой АВ и перпендикуляром BN, обозначенный через Способ плоскопараллельного перемещения треугольникаИз приведенного рисунка видно, что, если из точки В прямой построить на плоскость перпендикуляр, определить НВ дополнительного угла Способ плоскопараллельного перемещения треугольникато искомый угол определится по формуле:

Способ плоскопараллельного перемещения треугольника

которую можно решить графически, достроив угол Способ плоскопараллельного перемещения треугольникадо 90°.

То же самое можно сказать о задаче на определение двугранного угла, то есть угла между двумя плоскостями (рисунок 5.66). Первый способ (геометрический) достаточно трудоемок. Он заключается в пересечении угла вспомогательной плоскостью а, перпендикулярной ребру АВ, построении линий пересечения KN и KL и определении натуральной величины угла NKL.

Способ плоскопараллельного перемещения треугольника

С помощью дополнительного угла задача решается следующим образом. В растворе двугранного угла (рисунок 5.6в) берут любую точку К и строят из неё перпендикуляры на обе плоскости двугранного угла, которые образуют дополнительный угол Способ плоскопараллельного перемещения треугольникаДалее определяют НВ дополнительного угла и дополняют его (графически) до 180 градусов, исходя из формулы:

Способ плоскопараллельного перемещения треугольника

Дополненный угол будет искомым.

Натуральную величину дополнительного угла Способ плоскопараллельного перемещения треугольникав обеих задачах наиболее целесообразно определять методом вращения вокруг горизонтали или фронтали, который будет изложен в последующих темах.

Пример: Из любой вершины треугольника АВС восстановить перпендикуляр длиной 40 мм.

Способ плоскопараллельного перемещения треугольника

Решение: Сначала необходимо в плоскости треугольника АВС провести горизонталь и фронталь для того, чтобы построить проекции восстановленного перпендикуляра. Далее из точки С проводим проекции перпендикуляра согласно рассмотренному выше алгоритму о перпендикуляре к плоскости. Для того, чтобы отложить 40 мм, необходимо определить НВ ограниченного отрезка перпендикуляра CF (точку F берем произвольно). НВ отрезка CF определяем методом прямоугольного треугольника на горизонтальной проекции CF. Полученную точку К возвращаем на проекции по теореме Фалеса. Получаем проекции перпендикуляра длиной 40 мм (рисунок. 5.7).

Пример: Найти расстояние от точки А до плоскости, заданной следами

Способ плоскопараллельного перемещения треугольника

Решение: Из точки А строим перпендикуляр на заданную плоскость. Проекции перпендикуляра проводим перпендикулярно следам. Далее находим точку встречи перпендикуляра с заданной плоскостью с помощью вспомогательной фронтально-проецирующей плоскости Способ плоскопараллельного перемещения треугольникаНаходим линию пересечения плоскостей Способ плоскопараллельного перемещения треугольника(линия 1-2) и точку встречи Способ плоскопараллельного перемещения треугольникав месте пересечения горизонтальной проекции перпендикуляра с линией 1-2. Методом прямоугольного треугольника определяем НВ расстояния АК (рисунок 5.8).

Пример: Определить расстояние от точки К до прямой AВ.

Способ плоскопараллельного перемещения треугольника

Решение: Через точку К проводим плоскость, перпендикулярную заданной прямой. Плоскость задаем пересекающимися горизонталью и фронталью. Их проекции проводим согласно алгоритму о перпендикуляре к плоскости (обратная задача). Далее находим точку встречи прямой с проведенной плоскостью (точка М). Определяем натуральную величину КМ методом прямоугольного треугольника (рисунок 5.9).

Видео:Определение натуральной величины треугольника АВС методом замены плоскостей проекцииСкачать

Определение натуральной величины треугольника АВС методом замены плоскостей проекции

Примеры метрических задач

Задачи, в которых определяются различные геометрические величины -расстояния между объектами, длины отрезков, углы, площади и т.д. называются метрическими. Решение многих метрических задач, например задач на определение кратчайших расстояний, требует построения перпендикулярных прямых и плоскостей.

Перпендикулярность является частным случаем пересечения прямых, прямой и плоскости или двух плоскостей. Необходимо установить соотношения, по которым строятся проекции перпендикулярных прямых и плоскостей.

Теорема о проекциях прямого угла

Прямой угол проецируется на плоскость без искажения, если одна из его сторон параллельна этой плоскости (рис. 10.1).

Способ плоскопараллельного перемещения треугольника

Рис. 10.1. Теорема о проекциях прямого угла

Дано :Способ плоскопараллельного перемещения треугольникаBAC = 90°; AB || П’

Доказать, что C’A’Способ плоскопараллельного перемещения треугольникаA’B’

Доказательство: если AB||П’, то A’B’||AB, но AA’Способ плоскопараллельного перемещения треугольникаП’^AA’Способ плоскопараллельного перемещения треугольникаA’B’ значит ABСпособ плоскопараллельного перемещения треугольникаAA,AB Способ плоскопараллельного перемещения треугольникаплоскости CAA’C’, тогда и A’B’ Способ плоскопараллельного перемещения треугольникаCAA’C’. Следовательно,CA’Способ плоскопараллельного перемещения треугольникаA’B’.

На основании этой теоремы две взаимно перпендикулярные прямые (пересекающиеся или скрещивающиеся) проецируются на П1 в виде взаимно перпендикулярных прямых, если одна из них горизонталь, на П2 — если одна из них фронталь (рис. 10.2,а).

Условие перпендикулярности скрещивающихся прямых (рис. 10.2,б) сводятся к условиям перпендикулярности пересекающихся прямых, поведенных через произвольную точку и соответственно параллельных скрещивающимся прямым. Таким образом, понятие перпендикулярности можно отнести как к пересекающимся, так и к скрещивающимся прямым.

Способ плоскопараллельного перемещения треугольника

Рис. 10.2. Перпендикулярные прямые:
а -пересекающиеся a1 Способ плоскопараллельного перемещения треугольникаh1 Способ плоскопараллельного перемещения треугольникаa Способ плоскопараллельного перемещения треугольникаh ;
б -скрещивающиеся b2 Способ плоскопараллельного перемещения треугольникаСпособ плоскопараллельного перемещения треугольника2 Способ плоскопараллельного перемещения треугольникаb Способ плоскопараллельного перемещения треугольникаСпособ плоскопараллельного перемещения треугольника

Линии наибольшего наклона плоскости

Прямые, лежащие в плоскости и перпендикулярные линиям уровня этой плоскости, называются линиями наибольшего наклона к соответствующей плоскости проекций (рис. 10.3). Так, прямая, лежащая в плоскости и перпендикулярная горизонтали плоскости, называется линией наибольшего наклона к горизонтальной плоскости проекций, а прямая, перпендикулярная фронтали — линией наибольшего наклона к фронтальной плоскости проекций.

Угол между линией наибольшего наклона и ее проекцией на соответствующую плоскость равен углу наклона плоскости к плоскости проекций (см. рис. 9.15).
Способ плоскопараллельного перемещения треугольника

Рис. 10.3. Линия наибольшего наклона плоскости а к П1:
а — плоскость общего положения; h ∈α — горизонталь плоскости а; AB Способ плоскопараллельного перемещения треугольникаh — линия наибольшего наклона;
φ = Способ плоскопараллельного перемещения треугольникаAB, AB 1 — угол наклона плоскости а к П1

Перпендикулярность прямой и плоскости

Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым этой плоскости. На основании теоремы о проекциях прямого угла можно получить условие перпендикулярности прямой общего положения и плоскости общего положения:
Если прямая а перпендикулярна плоскости α(ABC), то ее горизонтальная проекция перпендикулярна горизонтальной проекции горизонтали плоскости, а фронтальная проекция — фронтальной проекции фронтали плоскости.

Например, при построении прямой а, перпендикулярной плоскости α(ABC) (рис. 10.4,а), в плоскости строятся линии уровня — горизонталь и фронталь, затем через произвольную точку в плоскости, в данном случае точку K(h×Способ плоскопараллельного перемещения треугольника), строится прямая, горизонтальная проекция которой перпендикулярна горизонтальной проекции горизонтали плоскости α(ABC), а фронтальная проекция — фронтальной проекции фронтали плоскости.

Способ плоскопараллельного перемещения треугольника

Рис. 10.4. Перпендикулярность прямой и плоскости:

а -построение прямой, перпендикулярной плоскости: Способ плоскопараллельного перемещения треугольника

б -построение плоскости, перпендикулярной прямой: Способ плоскопараллельного перемещения треугольника

Аналогично решается задача о построении плоскости, перпендикулярной прямой общего положения (рис. 10.4,б)

Если плоскость проецирующая, проекции линий уровня совпадают со следом плоскости, перпендикулярность устанавливается по отношению к следу плоскости. Горизонтальная проекция перпендикуляра к горизонтально-проецирующей плоскости строится перпендикулярно горизонтальному следу плоскости (рис. 10.5,а). Прямая, перпендикулярная горизонтально-проецирующей плоскости, занимает положение горизонтальной линии уровня.
Аналогично, фронтальная проекция перпендикуляра к фронтально-проецирующей плоскости строится перпендикулярно фронтальному следу плоскости (рис. 10.5,б). Прямая, перпендикулярная фронтально-проецирующей плоскости, занимает положение фронтали.

Способ плоскопараллельного перемещения треугольника

Рис. 10.5. Перпендикулярность прямой и проецирующей плоскости:
а -построение прямой, перпендикулярной плоскости;
б -построение плоскости, перпендикулярной прямой

Взаимная перпендикулярность плоскостей

Две плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой. Таким образом, построение взаимно перпендикулярных плоскостей сводится к построению перпендикулярных прямой и плоскости. Например, чтобы через произвольную точку А провести плоскость, перпендикулярную плоскости a(Способ плоскопараллельного перемещения треугольника× h) (рис. 10.6), достаточно построить прямую n,перпендикулярную плоскости α(Способ плоскопараллельного перемещения треугольника×h): n1Способ плоскопараллельного перемещения треугольникаh1; n2Способ плоскопараллельного перемещения треугольникаСпособ плоскопараллельного перемещения треугольника2. Вторая прямая m, определяющая искомую плоскость, может быть задана произвольно — как пересекающая прямую n или параллельная ей.

Способ плоскопараллельного перемещения треугольника

Рис. 10.6. Перпендикулярность двух плоскостей

Дано: α(h × Способ плоскопараллельного перемещения треугольника ) ; A (A1, A2).

Построить: A ∈ β Способ плоскопараллельного перемещения треугольникаα .

Способ плоскопараллельного перемещения треугольника

Видео:Определение натуральной величины треугольника АВС методом вращения вокруг горизонтали или фронталиСкачать

Определение натуральной величины треугольника АВС методом вращения вокруг горизонтали или фронтали

Определение метрических задач

Традиционно задачи, связанные с измерением длин, углов, площадей и объемов относят к метрическим. В основе решения этих задач лежит определение длины отрезка и, как производной от этого, площади плоской фигуры.

Определение длины отрезка

Одним из наиболее распространенных методов (рисунок 5.1) является метод прямоугольного треугольника (так его называют в начертательной геометрии) или метод ортогональных дополнений (название, принятое в линейной алгебре).
Способ плоскопараллельного перемещения треугольника

Идея метода базируется на следующем. Истинная величина отрезка AВ является гипотенузой прямоугольного треугольника, один из катетов которого, является проекцией отрезка AВ на плоскость проекции Способ плоскопараллельного перемещения треугольникаа второй катет -разница координат Способ плоскопараллельного перемещения треугольникаконцов отрезка для оси, отсутствующей в рассматриваемой плоскости проекции (ортогональное дополнение). Угол между проекцией и гипотенузой этого треугольника (а) определяет наклон прямой к соответствующей плоскости проекции.

На комплексном чертеже возможно решение как на плоскости Способ плоскопараллельного перемещения треугольникатак и на плоскости Способ плоскопараллельного перемещения треугольникаПри правильных построениях Способ плоскопараллельного перемещения треугольника. Углы а и Способ плоскопараллельного перемещения треугольника-углы наклона отрезка прямой АВ к плоскости Способ плоскопараллельного перемещения треугольникасоответственно.

Определение площади треугольника

Определение площади треугольника и величины плоского угла можно свести к известной задаче построения треугольника по трем сторонам.

Для этого достаточно, используя рассмотренный выше способ прямоугольного треугольника, найти по порядку истинные величины сторон Способ плоскопараллельного перемещения треугольника(в соответствии с рисунком 5.2), а затем на свободном месте построить треугольник по трем сторонам.

Способ плоскопараллельного перемещения треугольника
Величина плоского угла между двумя любыми сторонами этой фигуры может быть измерена на истинной величине треугольника.

Проецирование прямого угла

Решение многих задач Начертательной геометрии связано с необходимостью построения на чертеже взаимно перпендикулярных прямых и плоскостей. Базой для этого служит умение строить прямые углы на комплексном чертеже.

Способ плоскопараллельного перемещения треугольника
Известная в теории чертежа теорема (приведем ее без доказательства) утверждает, что прямой угол (в соответствии с рисунком 5.3) проецируется на

соответствующую плоскость проекций вез искажения, если одна из его сторон параллельна этой плоскости проекций, а вторая — ей не перпендикулярна.

Перпендикулярность прямых и плоскостей

Выше уже отмечалось, что в трехмерном Евклидовом пространстве отсутствует полная параллельность, то же самое можно сказать и о перпендикулярности. Понятие перпендикулярности так же, как и параллельности, вводится через определение.

Перпендикулярность прямой и плоскости

Считают, что прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся (любым) прямым этой плоскости.

При решении задачи возможны два варианта: проведение перпендикулярной прямой к плоскости из внешней точки и из точки, лежащей в плоскости.
Рассмотрим возможность проведения перпендикуляра из точки К, лежащей в плоскости общего положения Р, заданной следами (рисунок 5.4).

Способ плоскопараллельного перемещения треугольника
Рисунок 5.4 — Перпендикулярность прямой и плоскости

В плоскости Р (через точку К) проводятся горизонталь h и фронталь f. Прямые, перпендикулярные соответствующим проекциям линий уровня Способ плоскопараллельного перемещения треугольникав соответствии с теоремой о проецировании прямого угла и данным выше определением, могут быть приняты за проекции прямой Способ плоскопараллельного перемещения треугольника.

В том случае, когда точка К не лежит в плоскости Р, решение задачи аналогично (рисунок 5.5).

Поскольку положение точки пересечения искомого перпендикуляра не определено, решение соответствует следующей схеме:

а) в плоскости проводятся горизонталь h (через точку В) и фронталь f (через точку A), в случае задания плоскости следами за фронталь и горизонталь принимаются соответствующие следы плоскости Способ плоскопараллельного перемещения треугольника

Способ плоскопараллельного перемещения треугольника

Рисунок 5.5 — Перпендикуляр к плоскости

б) из внешней точки К к соответствующим проекциям линий уровня (следам) проводятся перпендикулярные прямыеСпособ плоскопараллельного перемещения треугольника— Линия t принимается за перпендикуляр, опущенный из точки К к плоскости Р;

в) определяется точка S пересечения этого перпендикуляра t и плоскости.

Расстояние от точки до плоскости

Способ плоскопараллельного перемещения треугольника
Рисунок 5.6 — Расстояние от точки до плоскости

Задачу на определение расстояние от точки до плоскости (рисунок 5.6) можно свести к решению уже известных задач на построение перпендикуляра к плоскости (рисунок 5.5) и определения натуральной величины отрезка прямой (рисунок 5.1)

Перпендикулярность плоскостей

Считают, что две плоскости взаимно перпендикулярны, если одна из них проходит через прямую, перпендикулярную другой плоскости.

Задача может ставиться, как проведение плоскости, перпендикулярной заданной, проходящей через точку или прямую.

При проведении искомой плоскости через точку, как и в предыдущем случае, возможны два варианта проведения плоскости перпендикулярной заданной: через точку, лежащую в плоскости и через точку вне ее (рисунок 5.7).

Точно такой же вариант возникает и при проведении перпендикулярной плоскости через прямую (лежащую в исходной плоскости или не лежащую).

Рассмотрим вариант построения плоскости, проходящей через точку. Пусть точка А лежит в плоскости Р. Линии Способ плоскопараллельного перемещения треугольникаперпендикулярные соответствующим проекциям линий уровня (следам), определят перпендикуляр t к плоскости Р.

Способ плоскопараллельного перемещения треугольника
Рисунок 5.7 — Перпендикулярность плоскостей
Проведение через точку А произвольной прямой s позволяет определить плоскость Q, которая будет перпендикулярна плоскости Р.

Если точка А лежит вне плоскости Р, то решение аналогично. Проведение через точку А перпендикуляра t и произвольной прямой s определит плоскость Q, которая также, по определению, будет перпендикулярна плоскости Р.

Решение задачи на проведение плоскости через прямую аналогично решению задачи по проведению плоскости через точку. Достаточно вместо произвольной прямой s использовать заданную прямую АВ. И тогда, в соответствии с рисунком 5.8, задача сведется к проведению перпендикуляра t к плоскости Р (из точки, лежащей в плоскости или лежащей вне ее).
Способ плоскопараллельного перемещения треугольника

Рисунок 5.8 — Перпендикулярность плоскостей

Определение натуральных величин геометрических элементов

1. Определить натуральную величину отрезка общего положения:

  • способом прямоугольного треугольника;
  • способом замены плоскостей проекций преобразовать в прямую уровня;
  • способом вращения вокруг проецирующей оси преобразовать в прямую уровня.

2. Определить натуральную величину плоскости общего положения (замкнутого отсека):

  • способом замены плоскостей проекций преобразовать в плоскость уровня;
  • способом вращения вокруг линии уровня преобразовать в плоскость уровня;
  • способом плоскопараллельного перемещения преобразовать в плоскость уровня.

Определение расстояния между геометрическими элементами (образами)

1. Определить расстояние от точки до прямой общего положения:

  • способом замены плоскостей проекций преобразовать плоскость, заданную прямой и точкой, в плоскость уровня (задачи 3 и 4 преобразования; прямую и точку рассматривать как плоскость);
  • способом замены плоскостей проекций преобразовать прямую общего положения в проецирующую прямую (задачи 1 и 2 преобразования);
  • способом вращения вокруг линии уровня преобразовать плоскость, заданную прямой и точкой, в плоскость уровня;
  • способом плоскопараллельного перемещения преобразовать плоскость, заданную прямой и точкой, в плоскость уровня;
  • способом задания плоскости, перпендикулярной к прямой (3-й тип задач), построить через заданную точку плоскость, перпендикулярную к прямой, и определить точку пересечения последней с плоскостью.

2. Определить расстояние между параллельными прямыми:

  • способом замены плоскостей проекций преобразовать плоскость, заданную параллельными прямыми, в плоскость уровня (задачи 3 и 4 преобразования);
  • способом замены плоскостей проекций преобразовать две параллельные общего положения в проецирующие прямые (задачи 1 и 2 преобразования);
  • способом вращения вокруг линии уровня преобразовать плоскость, заданную параллельными прямыми, в плоскость уровня, ограничив ее замкнутым отсеком;
  • способом плоскопараллельного перемещения преобразовать плоскость, заданную параллельными прямыми, в плоскость уровня;
  • способом задания плоскости, перпендикулярной к прямой (3-й тип задач), построить плоскость через любую точку, принадлежащую одной из прямых, перпендикулярную ко второй прямой, и определить точку пересечения этой плоскости со второй прямой.

3. Определить расстояние между скрещивающимися прямыми, преобразовав одну из прямых в проецирующую (задачи 1 и 2 преобразования).

4. Определить расстояние от точки до плоскости:

  • по теме «Перпендикулярность» – провести перпендикуляр к плоскости, построить точку пересечения этого перпендикуляра с заданной плоскостью и найти любым способом натуральную величину построенного отрезка (см. пункт 1);
  • способом замены плоскостей проекций преобразовать плоскость общего положения в плоскость проецирующую.

5. Определить расстояние от точки до поверхности вращения:

  • способом замены плоскостей проекций преобразовать плоскость, проведенную через точку и ось вращения поверхности, в плоскость уровня (задача 4 преобразования);
  • способом вращения вокруг проецирующей оси повернуть плоскость, проведенную через точку и ось вращения поверхности, в плоскость уровня.

Определение углов наклона геометрических элементов к плоскостям проекций H и V

1. Определить углы наклона прямой общего положения к плоскостям проекций H и V:

  • способом прямоугольного треугольника построить на двух проекциях натуральные величины отрезка и определить углы наклона прямой;
  • способом замены плоскостей проекций преобразовать прямую общего положения в горизонтальную, а затем во фронтальную прямую (задача 1 преобразования);
  • способом вращения вокруг соответствующей проецирующей оси преобразовать прямую общего положения в горизонтальную и во фронтальную прямые.

2. Определить угол наклона прямой к заданной плоскости общего положения:

  • из любой точки прямой опустить перпендикуляр к плоскости;
  • способом вращения вокруг линии уровня преобразовать построенную плоскость, заданную прямой и перпендикуляром, в плоскость уровня;
  • искомый угол будет дополнять построенный угол до 90°.

3. Определить величину двухгранного угла, если на чертеже есть линии пересечения плоскостей, образующих двухгранный угол (ребро):

  • способом замены плоскостей проекций преобразовать ребро двухгранного угла в проецирующую прямую (задачи 1 и 2 преобразования).

4. Определить угол между двумя плоскостями общего положения, если на чертеже нет линии пересечения заданных плоскостей (ребра):

  • задача решается косвенным путем, для чего из любой точки пространства следует опустить перпендикуляры к заданным плоскостям, которые, в свою очередь, задают вспомогательную плоскость, перпендикулярную к этим плоскостям;
  • эту вспомогательную плоскость способом вращения вокруг линии уровня следует преобразовать в плоскость уровня, определив угол между перпендикулярами (преобразование вспомогательной плоскости в плоскость уровня возможно и другими способами – ее плоскопараллельным перемещением или заменой плоскостей проекций);
  • искомый угол будет дополнять построенный угол до 180° (углом между плоскостями считают угол острый).

Структуризация материала тринадцатой лекции в рассмотренном объеме схематически представлена на рис. 13.1 (лист 1). На последующих листах 2–7 компактно приведены иллюстрации к этой схеме для визуального повторения изученного материала при его повторении (рис. 13.2–13.7).

Метрические задачи:

Способ плоскопараллельного перемещения треугольника

Определение натуральной величины геометрических элементов:

1. Определение длины отрезка

Способ прямоугольного треугольника

Способ плоскопараллельного перемещения треугольника

Способ замены плоскостей проекций (задача 1)

Способ плоскопараллельного перемещения треугольника

Способ вращения вокруг проецирующей оси

Способ плоскопараллельного перемещения треугольника

2. Определение площади замкнутого отсека

Способ замены плоскостей проекций (задачи 3 и 4)

Способ плоскопараллельного перемещения треугольника

Способ вращения вокруг прямой уровня (горизонтали)

Способ плоскопараллельного перемещения треугольника

Способ вращения вокруг проецирующей оси i(i Способ плоскопараллельного перемещения треугольникаV)

Способ плоскопараллельного перемещения треугольника

Способ плоско-параллельного перемещения (переноса)

Способ плоскопараллельного перемещения треугольника

Определение расстояний:

1. Расстояние между точками — определяется величиной отрезка, соединяющего эти точки

2. Расстояние от точки до прямой — определяется величиной перпендикуляра, опущенного из точки к прямой

а. Прямой путь (перпендикулярность)

б. Способ замены плоскостей проекций: определить натуральную величину плоскости, которую определяют точка и прямая (см.рис. 13.2, г)

в. Способ вращения вокруг прямой уровня: определить натуральную величину плоскости, которую определяют точка и прямая (см.рис.13.2, д)

г. Способ плоскопараллельного переноса: определить натуральную величину плоскости, которую определяют точка и прямая (см.рис.13.2, ж)

Способ плоскопараллельного перемещения треугольника

3. Расстояние между параллельными прямыми — определяется величиной перпендикуляра, проведённого из произвольной точки одной прямой к другой прямой

а. Способ замены плоскостей проекции (рассматриваем две прямые) — задачи 1 и 2 (преобразовать прямые общего положения AB и CD в проецирующие)

б. Способ замены плоскостей проекции (рассматриваем плоскость, которую определяют параллельные прямые) — задачи 3 и 4 (определить натуральную величину плоскости ? (AB//СВ))

Способ плоскопараллельного перемещения треугольника

Способ плоскопараллельного перемещения треугольника

4. Расстояние между скрещивающимися прямыми — определяется величиной перпендикуляра, проведённого от одной из прямых, преобразованной в точку, к другой прямой (задачи 1 и 2 замены плоскостей проекции).

Способ замены плоскостей проекций — задачи 1 и 2

Способ плоскопараллельного перемещения треугольника

5. Расстояние от точки до плоскости — определяется величиной перпендикуляра, проведённого из точки на плоскость до точки его пересечения с этой плоскостью.

а. Прямой путь (перпендикулярность)

Способ плоскопараллельного перемещения треугольника

б. Способ замены плоскостей проекций (плоскость преобразовать в проецирующую — задача 3)

Способ плоскопараллельного перемещения треугольника

6. Расстояние между прямой и параллельной ей плоскостью — определяется величиной перпендикуляра, проведённого из произвольной точки на прямой к плоскости.

7. Расстояние между параллельными плоскостями — определяется величиной отрезка перпендикуляра, опущенного из точки одной плоскости на другую плоскость (до точки пересечения с другой плоскостью).

8. Расстояние от точки до поверхности

a. Cпособ вращения вокруг проецирующей оси

Способ плоскопараллельного перемещения треугольника

Способ плоскопараллельного перемещения треугольника

Способ плоскопараллельного перемещения треугольника

б. Способ замены плоскостей проекции

Способ плоскопараллельного перемещения треугольника

Способ плоскопараллельного перемещения треугольника

Определение величин углов:

1. Угол φ между скрещивающимися прямыми — определяется плоским углом, образованным двумя пересекающимися прямыми, проведёнными из произвольной точки пространства параллельно скрещивающимся прямым (рис. 13.6, а)

Способ вращения вокруг линии уровня

Дано:
а и b — скрещивающиеся прямые
Требуется:

φ — ?

Решение:
1.
Способ плоскопараллельного перемещения треугольника
2.φ — вращением вокруг фронтали, проведённой в построенной плоскости α(dс)

Способ плоскопараллельного перемещения треугольника

2. Угол φ между прямой и плоскостью — определяется углом между прямой и её проекцией на эту плоскость.

Дано:
α(h ∩ f);
AB — прямая общего положения
Требуется:
φ — ?

Способ плоскопараллельного перемещения треугольника

Решение:
1. l Способ плоскопараллельного перемещения треугольника α(h ∩ f);
lСпособ плоскопараллельного перемещения треугольника» Способ плоскопараллельного перемещения треугольникаf»;
lСпособ плоскопараллельного перемещения треугольника Способ плоскопараллельного перемещения треугольникаh’;
2. ∠φ — вращением вокруг фронтали, проведённой в построенной плоскости β(AB∩l)

3. Угол φ между плоскостями α и β — определяется линейным углом, образованным двумя прямыми, по которым некоторая плоскость γ, перпендикулярная плоскостям (или их ребру), пересекает эти плоскости (углом между плоскостями считают острый угол).

а. Если на чертеже нет ребра (линии пересечения заданных плоскостей) — угол φ определяется способом вращения вокруг линии уровня (рис. а)

Способ плоскопараллельного перемещения треугольника

Дано:
(m // h); (а
b).
Требуется:
φ — ?
Решение:
1. провести в заданной плоскости фронтали и горизонтали;

2. из произвольной точки пространства D (D’, D») провести перпендикуляры l1 и l2 к заданными плоскостям, которые определяют плоскость γ(l1 l2);
3.
φ — вращением вокруг горизонтали h3, проведённой в построенной плоскости γ(l1 l2).

Способ плоскопараллельного перемещения треугольника

б. Если на чертеже есть ребро (линия пересечения заданных плоскостей) — угол φ определяется способом замены плоскостей проекций (задачи 1 и 2, рис. б)

Способ плоскопараллельного перемещения треугольника

ребро АВ двугранного угла преобразовать двумя заменами в проецирующую прямую.

Рекомендую подробно изучить предметы:
  1. Инженерная графика
  2. Начертательная геометрия
  3. Компас
  4. Автокад
  5. Черчение
  6. Проекционное черчение
  7. Аксонометрическое черчение
  8. Строительное черчение
  9. Техническое черчение
  10. Геометрическое черчение
Ещё лекции с примерами решения и объяснением:
  • Тени в ортогональных проекциях
  • Кривые поверхности
  • Пересечения криволинейных поверхностей
  • Пересечения поверхностей с прямой и плоскостью
  • Пересечение поверхности плоскостью и прямой
  • Развертки поверхностей
  • Способы преобразования проекций
  • Взаимное положение прямой и плоскости

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

📺 Видео

Способ замены (перемены) плоскостей проекции. Определение истинной величины отрезка и плоской фигурыСкачать

Способ замены (перемены) плоскостей проекции. Определение истинной величины отрезка и плоской фигуры

Углы наклона плоскости, к плоскостям проекций. Способ параллельного перемещения.Скачать

Углы наклона плоскости, к плоскостям проекций. Способ параллельного перемещения.

Начертательная геометрия: 14_Способ плоскопараллельного перемещения. ПлоскостьСкачать

Начертательная геометрия: 14_Способ плоскопараллельного перемещения. Плоскость

Определение кратчайшей расстоянии от точки до плоскостиСкачать

Определение кратчайшей расстоянии от точки до плоскости

Плоскопараллельное перемещение объектов - начертательная геометрияСкачать

Плоскопараллельное перемещение объектов - начертательная геометрия

10. Определение натуральной величины плоской фигуры методом плоско-параллельного перемещенияСкачать

10. Определение натуральной величины плоской фигуры методом плоско-параллельного перемещения

Нахождение натуральной величины треугольника. Метод замены плоскостей проекцийСкачать

Нахождение натуральной величины треугольника. Метод замены плоскостей проекций

Пересечение двух плоскостей. Плоскости в виде треугольникаСкачать

Пересечение двух плоскостей. Плоскости в виде треугольника

Определение истинной величины двугранного угла АВСD при ребре АВ методом замены плоскостей проекцииСкачать

Определение истинной величины двугранного угла АВСD при ребре АВ методом замены плоскостей проекции

Определение кратчайшей расстояние от точки до плоскости способом замены плоскостей проекцииСкачать

Определение кратчайшей расстояние от точки до плоскости способом замены плоскостей проекции

Способ вращения. Определение истинной величины отрезка.Скачать

Способ вращения. Определение истинной величины отрезка.

Угол наклона плоскости общего положения относительно плоскостям проекцииСкачать

Угол наклона плоскости общего положения относительно плоскостям проекции
Поделиться или сохранить к себе: