Списанный угол в окружность

Углы, связанные с окружностью
Списанный угол в окружностьВписанные и центральные углы
Списанный угол в окружностьУглы, образованные хордами, касательными и секущими
Списанный угол в окружностьДоказательства теорем об углах, связанных с окружностью

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Вписанные и центральные углы

Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

Списанный угол в окружность

Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

Списанный угол в окружность

Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

Видео:Углы, вписанные в окружность. 9 класс.Скачать

Углы, вписанные в окружность. 9 класс.

Теоремы о вписанных и центральных углах

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

ФигураРисунокТеорема
Вписанный уголСписанный угол в окружность
Вписанный уголСписанный угол в окружностьВписанные углы, опирающиеся на одну и ту же дугу равны.
Вписанный уголСписанный угол в окружностьВписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
Вписанный уголСписанный угол в окружностьДва вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
Вписанный уголСписанный угол в окружностьВписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
Окружность, описанная около прямоугольного треугольникаСписанный угол в окружность

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Списанный угол в окружность

Вписанные углы, опирающиеся на одну и ту же дугу равны.

Списанный угол в окружность

Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

Списанный угол в окружность

Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

Списанный угол в окружность

Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

Списанный угол в окружность

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Списанный угол в окружность

Видео:Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

Теоремы об углах, образованных хордами, касательными и секущими

Вписанный угол
Окружность, описанная около прямоугольного треугольника

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

ФигураРисунокТеоремаФормула
Угол, образованный пересекающимися хордамиСписанный угол в окружностьСписанный угол в окружность
Угол, образованный секущими, которые пересекаются вне кругаСписанный угол в окружностьСписанный угол в окружность
Угол, образованный касательной и хордой, проходящей через точку касанияСписанный угол в окружностьСписанный угол в окружность
Угол, образованный касательной и секущейСписанный угол в окружностьСписанный угол в окружность
Угол, образованный двумя касательными к окружностиСписанный угол в окружностьСписанный угол в окружность

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Списанный угол в окружность

Списанный угол в окружность

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Списанный угол в окружность

Списанный угол в окружность

Списанный угол в окружность

Списанный угол в окружность

Угол, образованный пересекающимися хордами хордами
Списанный угол в окружность
Формула: Списанный угол в окружность
Угол, образованный секущими секущими , которые пересекаются вне круга
Формула: Списанный угол в окружность

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный касательной и хордой хордой , проходящей через точку касания
Списанный угол в окружность
Формула: Списанный угол в окружность
Угол, образованный касательной и секущей касательной и секущей
Формула: Списанный угол в окружность

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный двумя касательными касательными к окружности
Формулы: Списанный угол в окружность

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Видео:Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |Скачать

Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Списанный угол в окружность

Списанный угол в окружность

Списанный угол в окружность

Списанный угол в окружность

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

Списанный угол в окружность

В этом случае справедливы равенства

Списанный угол в окружность

Списанный угол в окружность

Списанный угол в окружность

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

Списанный угол в окружность

В этом случае справедливы равенства

Списанный угол в окружность

Списанный угол в окружность

Списанный угол в окружность

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Списанный угол в окружность

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

Списанный угол в окружность

Списанный угол в окружность

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Списанный угол в окружность

Списанный угол в окружность

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

Списанный угол в окружность

Списанный угол в окружность

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Списанный угол в окружность

Списанный угол в окружность

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

Списанный угол в окружность

Списанный угол в окружность

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Списанный угол в окружность

Списанный угол в окружность

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

Списанный угол в окружность

Списанный угол в окружность

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Списанный угол в окружность

Списанный угол в окружность

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

Видео:Углы, вписанные в окружность. Практическая часть. 9 класс.Скачать

Углы, вписанные в окружность. Практическая часть. 9 класс.

Центральные и вписанные углы

Списанный угол в окружность

О чем эта статья:

Видео:Вписанные углы в окружностиСкачать

Вписанные углы в окружности

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

Списанный угол в окружность

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.

Вписанный угол равен половине дуги, на которую опирается.

Списанный угол в окружность

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Видео:ЦЕНТРАЛЬНЫЙ угол ВПИСАННЫЙ угол окружности 8 класс АтанасянСкачать

ЦЕНТРАЛЬНЫЙ угол ВПИСАННЫЙ угол окружности 8 класс Атанасян

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

  • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

Списанный угол в окружность

Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

  • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:

Списанный угол в окружность

  • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

Списанный угол в окружность

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

  • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

Списанный угол в окружность

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

Списанный угол в окружность

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

Списанный угол в окружность

  • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

Списанный угол в окружность

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

  • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

Списанный угол в окружность

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

  • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

Списанный угол в окружность

ㄥBAC + ㄥBDC = 180°

Видео:ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный Угол

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

Списанный угол в окружность

Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Списанный угол в окружность

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

Списанный угол в окружность

СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

Видео:ВПИСАННЫЙ УГОЛ окружности ТЕОРЕМА 8 класс АтанасянСкачать

ВПИСАННЫЙ УГОЛ окружности ТЕОРЕМА 8 класс Атанасян

Окружность. Центральный и вписанный угол

Центральный угол — это угол, вершина которого находится в центре окружности.
Вписанный угол — угол, вершина которого лежит на окружности, а стороны пересекают ее.

На рисунке — центральные и вписанные углы, а также их важнейшие свойства.

Списанный угол в окружность
Итак, величина центрального угла равна угловой величине дуги, на которую он опирается.
Значит, центральный угол величиной в градусов будет опираться на дугу, равную , то есть круга. Центральный угол, равный , опирается на дугу в градусов, то есть на шестую часть круга.

Величина вписанного угла в два раза меньше центрального, опирающегося на ту же дугу.

Также для решения задач нам понадобится понятие «хорда».

Списанный угол в окружность
Равные центральные углы опираются на равные хорды.

1 . Чему равен вписанный угол, опирающийся на диаметр окружности? Ответ дайте в градусах.

Вписанный угол, опирающийся на диаметр, — прямой.

2 . Центральный угол на больше острого вписанного угла, опирающегося на ту же дугу окружности. Найдите вписанный угол. Ответ дайте в градусах.

Пусть центральный угол равен , а вписанный угол, опирающийся на ту же дугу, равен .

Списанный угол в окружность

Мы знаем, что .
Отсюда ,
.

Ты нашел то, что искал? Поделись с друзьями!

3 . Радиус окружности равен . Найдите величину тупого вписанного угла, опирающегося на хорду, равную . Ответ дайте в градусах.

Списанный угол в окружность

Пусть хорда равна . Тупой вписанный угол, опирающийся на эту хорду, обозначим .
В треугольнике стороны и равны , сторона равна . Нам уже встречались такие треугольники. Очевидно, что треугольник — прямоугольный и равнобедренный, то есть угол равен .
Тогда дуга равна , а дуга равна .
Вписанный угол опирается на дугу и равен половине угловой величины этой дуги, то есть .

4 . Хорда делит окружность на две части, градусные величины которых относятся как . Под каким углом видна эта хорда из точки , принадлежащей меньшей дуге окружности? Ответ дайте в градусах.

Списанный угол в окружность

Главное в этой задаче — правильный чертеж и понимание условия. Как вы понимаете вопрос: «Под каким углом хорда видна из точки ?»
Представьте, что вы сидите в точке и вам необходимо видеть всё, что происходит на хорде . Так, как будто хорда — это экран в кинотеатре 🙂
Очевидно, что найти нужно угол .
Сумма двух дуг, на которые хорда делит окружность, равна , то есть

Отсюда , и тогда вписанный угол опирается на дугу, равную .
Величина вписанного угла равна половине угловой величины дуги, на которую он опирается, значит, угол равен .

📺 Видео

8 класс, 34 урок, Теорема о вписанном углеСкачать

8 класс, 34 урок, Теорема о вписанном угле

Углы, вписанные в окружность. Практическая часть. 9 класс.Скачать

Углы, вписанные в окружность. Практическая часть. 9 класс.

Геометрия. Теорема о вписанном углеСкачать

Геометрия. Теорема о вписанном угле

Углы в окружности. 16 задание ОГЭ математика 2023 | Молодой РепетиторСкачать

Углы в окружности. 16 задание ОГЭ математика 2023 | Молодой Репетитор

Окружность на ОГЭ. Центральные и вписанные углыСкачать

Окружность на ОГЭ. Центральные и вписанные углы

ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ . §9 геометрия 8 классСкачать

ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ . §9 геометрия 8 класс

Вписанный угол в окружность ❤️ #геометрияСкачать

Вписанный угол в окружность ❤️ #геометрия

Углы, вписанные в окружность. Практическая часть. 9 класс.Скачать

Углы, вписанные в окружность. Практическая часть. 9 класс.

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Задача 6 №27859 ЕГЭ по математике. Урок 104Скачать

Задача 6 №27859 ЕГЭ по математике. Урок 104

Вписанные и центральные углыСкачать

Вписанные и центральные углы
Поделиться или сохранить к себе: