Две материальные точки двигаются по окружности

№109. Две материальные точки движутся по окружности радиусами R1 и R2, причем R1 = 2R2. Сравнить их центростремительные ускорения в случаях: 1) равенства их скоростей; 2) равенства их периодов обращения.

Две материальные точки двигаются по окружности

Две материальные точки двигаются по окружности

Две материальные точки двигаются по окружности Решебник по физике за 10, 11 класс (А.П. Рымкевич, 2001 год),
задача №109
к главе «МЕХАНИКА. ГЛАВА I. ОСНОВЫ КИНЕМАТИКИ. 6. Равномерное движение тела по окружности».

Выделите её мышкой и нажмите CTRL + ENTER

Большое спасибо всем, кто помогает делать сайт лучше! =)

Нажмите на значок глаза возле рекламного блока, и блоки станут менее заметны. Работает до перезагрузки страницы.

Видео:Криволинейное, равномерное движение материальной точки по окружности. 9 класс.Скачать

Криволинейное, равномерное движение материальной точки по окружности. 9 класс.

Две материальные точки движутся по окружности радиусами R1 и R2, причем R1 = 2R2. Сравнить их центростремительные ускорения в случаях: 1) равенства их скоростей; 2) равенства их периодов обращения.

Две материальные точки двигаются по окружности

А центростремительное = v^2/r
Пусть R2 = r, тогда R1=2r
В первом случае a1 = v^2/2r;
Во втором a2 = v^2/r
a1/a2=1/2, в таком случае ускорение во 2 случае меньше ускорения в 1 случае в 2 раза.

Формула та же, а = v^2/r
T = 2ПR/v
v = 2ПR/T
Тогда:
v1=2П*2r/T; (v1)^2=(2П*2r/T)^2=4П^2*4r^2/T^2
v2=2П*r/t; (v2)^2=(2П*r/T)^2=4П^2*r^2/T^2
v1/v2=44П^2*4r/T^2/4П^2*r/T^2=4/1, т.е. ускорение увеличится в 4 раза.

Видео:Физика - движение по окружностиСкачать

Физика - движение по окружности

Движение по окружности с постоянной по модулю скоростью

теория по физике 🧲 кинематика

Криволинейное движение — движение, траекторией которого является кривая линия. Вектор скорости тела, движущегося по кривой линии, направлен по касательной к траектории. Любой участок криволинейного движения можно представить в виде движения по дуге окружности или по участку ломаной.

Движение по окружности с постоянной по модулю скоростью — частный и самый простой случай криволинейного движения. Это движение с переменным ускорением, которое называется центростремительным.

Две материальные точки двигаются по окружности

Особенности движения по окружности с постоянной по модулю скоростью:

  1. Траектория движения тела есть окружность.
  2. Вектор скорости всегда направлен по касательной к окружности.
  3. Направление скорости постоянно меняется под действием центростремительного ускорения.
  4. Центростремительное ускорение направлено к центру окружности и не вызывает изменения модуля скорости.

Видео:Урок 89. Движение по окружности (ч.1)Скачать

Урок 89. Движение по окружности (ч.1)

Период, частота и количество оборотов

Пусть тело двигается по окружности беспрерывно. Когда оно сделает один оборот, пройдет некоторое время. Когда тело сделает еще один оборот, пройдет еще столько же времени. Это время не будет меняться, потому что тело движется с постоянной по модулю скоростью. Такое время называют периодом.

Период — время одного полного оборота. Обозначается буквой T. Единица измерения — секунды (с).

Две материальные точки двигаются по окружности

t — время, в течение которого тело совершило N оборотов

За один и тот же промежуток времени тело может проходить лишь часть окружности или совершать несколько единиц, десятков, сотен или более оборотов. Все зависит от длины окружности и модуля скорости.

Частота — количество оборотов, совершенных в единицу времени. Обозначается буквой ν («ню»). Единица измерения — Гц.

Две материальные точки двигаются по окружности

N — количество оборотов, совершенных телом за время t.

Период и частота — это обратные величины, определяемые формулами:

Две материальные точки двигаются по окружности

Количество оборотов выражается следующей формулой:

Две материальные точки двигаются по окружности

Пример №1. Шарик на нити вращается по окружности. За 10 секунд он совершил 20 оборотов. Найти период и частоту вращения шарика.

Две материальные точки двигаются по окружности

Видео:Равномерное движение точки по окружности | Физика 10 класс #7 | ИнфоурокСкачать

Равномерное движение точки по окружности | Физика 10 класс #7 | Инфоурок

Линейная и угловая скорости

Линейная скорость

Линейная скорость — это отношение пройденного пути ко времени, в течение которого этот путь был пройден. Обозначается буквой v. Единица измерения — м/с.

Две материальные точки двигаются по окружности

l — длина траектории, вдоль которой двигалось тело за время t

Линейную скорость можно выразить через период. За один период тело делает один оборот, то есть проходить путь, равный длине окружности. Поэтому его скорость равна:

Две материальные точки двигаются по окружности

R — радиус окружности, по которой движется тело

Если линейную скорость можно выразить через период, то ее можно выразить и через частоту — величину, обратную периоду. Тогда формула примет вид:

Две материальные точки двигаются по окружности

Выразив частоту через количество оборотов и время, в течение которого тело совершало эти обороты, получим:

Две материальные точки двигаются по окружности

Угловая скорость

Угловая скорость — это отношение угла поворота тела ко времени, в течение которого тело совершало этот поворот. Обозначается буквой ω. Единица измерения — радиан в секунду (рад./с).

Две материальные точки двигаются по окружности

ϕ — угол поворота тела. t — время, в течение которого тело повернулось на угол ϕ

Радиан — угол, соответствующий дуге, длина которой равна ее радиусу. Полный угол равен 2π радиан.

Две материальные точки двигаются по окружности

За один полный оборот тело поворачивается на 2π радиан. Поэтому угловую скорость можно выразить через период:

Две материальные точки двигаются по окружности

Выражая угловую скорость через частоту, получим:

Две материальные точки двигаются по окружности

Выразив частоту через количество оборотов, формула угловой скорости примет вид:

Две материальные точки двигаются по окружности

Сравним две формулы:

Две материальные точки двигаются по окружности

Преобразуем формулу линейной скорости и получим:

Две материальные точки двигаются по окружности

Отсюда получаем взаимосвязь между линейной и угловой скоростями:

Две материальные точки двигаются по окружности

Полезные факты

  • У вращающихся прижатых друг к другу цилиндров линейные скорости точек их поверхности равны: v1 = v2.
  • У вращающихся шестерен линейные скорости точек их поверхности также равны: v1 = v2.
  • Все точки вращающегося твердого тела имеют одинаковые периоды, частоты и угловые скорости, но разные линейные скорости. T1 = T2, ν1 = ν2, ω1 = ω2. Но v1 ≠ v2.

Пример №2. Период обращения Земли вокруг Солнца равен одному году. Радиус орбиты Земли равен 150 млн. км. Чему примерно равна скорость движения Земли по орбите? Ответ округлить до целых.

В году 365 суток, в одних сутках 24 часа, в 1 часе 60 минут, в одной минуте 60 секунд. Перемножив все эти числа между собой, получим период в секундах.

Две материальные точки двигаются по окружности

За каждую секунду Земля проходит расстояние, равное примерно 30 км.

Видео:Движение материальной точки по окружности | Физика ЕГЭ, ЦТСкачать

Движение материальной точки по окружности | Физика ЕГЭ, ЦТ

Центростремительное ускорение

Центростремительное ускорение — ускорение с постоянным модулем, но меняющимся направлением. Поэтому оно вызывает изменение направления вектора скорости, но не изменяет его модуль. Центростремительное ускорение обозначается как aц.с.. Единица измерения — метры на секунду в квадрате (м/с 2 ). Центростремительное ускорение можно выразить через линейную и угловую скорости, период, частоту и количество оборотов/время:

Две материальные точки двигаются по окружности

Пример №3. Рассчитать центростремительное ускорение льва, спящего на экваторе, в системе отсчета, две оси которой лежат в плоскости экватора и направлены на неподвижные звезды, а начало координат совпадает с центром Земли.

Спящий лев сделает один полный оборот тогда, когда Земля сделает один оборот вокруг своей оси. Земля делает это за время, равное 1 сутки. Поэтому период обращения равен 1 суткам. Количество секунд в сутках: 1 сутки = 24•60•60 секунд = 86400 секунд = 86,4∙10 3 секунд.

Радиус Земли равен 6400 км. В метрах это будет 6,4∙10 6 . Теперь у нас есть все, что нужно для вычисления центростремительного ускорения. Подставляем данные в формулу:

Две материальные точки двигаются по окружности

Алгоритм решения

  1. Записать исходные данные.
  2. Записать формулу для определения искомой величины.
  3. Подставить известные данные в формулу и произвести вычисления.

Решение

Записываем исходные данные:

  • Радиус окружности, по которой движется автомобиль: R = 100 м.
  • Скорость автомобиля во время движения по окружности: v = 20 м/с.

Формула, определяющая зависимость центростремительного ускорения от скорости движения тела:

Две материальные точки двигаются по окружности

Подставляем известные данные в формулу и вычисляем:

Две материальные точки двигаются по окружности

pазбирался: Алиса Никитина | обсудить разбор | оценить

Точка движется по окружности радиусом R с частотой обращения ν. Как нужно изменить частоту обращения, чтобы при увеличении радиуса окружности в 4 раза центростремительное ускорение точки осталось прежним?

а) увеличить в 2 раза б) уменьшить в 2 раза в) увеличить в 4 раза г) уменьшить в 4 раза

Алгоритм решения

  1. Записать исходные данные.
  2. Определить, что нужно найти.
  3. Записать формулу зависимости центростремительного ускорения от частоты.
  4. Преобразовать формулу зависимости центростремительного ускорения от частоты для каждого из случаев.
  5. Приравнять правые части формул и найти искомую величину.

Решение

Запишем исходные данные:

Центростремительное ускорение определяется формулой:

Две материальные точки двигаются по окружности

Запишем формулы центростремительного ускорения для 1 и 2 случаев соответственно:

Две материальные точки двигаются по окружности

Так как центростремительное ускорение в 1 и 2 случае одинаково, приравняем правые части уравнений:

Две материальные точки двигаются по окружности

Произведем сокращения и получим:

Две материальные точки двигаются по окружности

Две материальные точки двигаются по окружности

Две материальные точки двигаются по окружности

Это значит, чтобы центростремительное ускорение осталось неизменным после увеличения радиуса окружности в 4 раза, частота должна уменьшиться вдвое. Верный ответ: «б».

pазбирался: Алиса Никитина | обсудить разбор | оценить

💥 Видео

Физика - импульс и закон сохранения импульсаСкачать

Физика - импульс и закон сохранения импульса

Центростремительное ускорение. 9 класс.Скачать

Центростремительное ускорение. 9 класс.

Движение тела по окружности с постоянной по модулю скоростью | Физика 9 класс #18 | ИнфоурокСкачать

Движение тела по окружности с постоянной по модулю скоростью | Физика 9 класс #18 | Инфоурок

№ 1-100 - Физика 10-11 класс РымкевичСкачать

№ 1-100 - Физика 10-11 класс Рымкевич

Урок 43. Криволинейное движение. Равномерное движение по окружности. Центростремительное ускорениеСкачать

Урок 43. Криволинейное движение. Равномерное движение по окружности. Центростремительное ускорение

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Криволинейное, равномерное движение материальной точки по окружности. Практическая часть. 9 класс.Скачать

Криволинейное, равномерное движение материальной точки по окружности. Практическая часть. 9 класс.

Вращательное движение. 10 класс.Скачать

Вращательное движение. 10 класс.

1 2 4 сопряжение окружностейСкачать

1 2 4  сопряжение окружностей

Урок 44. Вращение твердого тела. Линейная и угловая скорость. Период и частота вращения.Скачать

Урок 44. Вращение твердого тела. Линейная и угловая скорость. Период и частота вращения.

№ 101-200 - Физика 10-11 класс РымкевичСкачать

№ 101-200 - Физика 10-11 класс Рымкевич

движение по окружности в метрике МинковскогоСкачать

движение по окружности в метрике Минковского

Физика 10 класс (Урок№2 - Равномерное прямолинейное движение материальной точки.)Скачать

Физика 10 класс (Урок№2 - Равномерное прямолинейное движение материальной точки.)

Урок 94. Вычисление моментов инерции телСкачать

Урок 94. Вычисление моментов инерции тел
Поделиться или сохранить к себе: