- Определение
- Формулы
- Радиус вписанной окружности в треугольник
- Радиус описанной окружности около треугольника
- Площадь треугольника
- Периметр треугольника
- Сторона треугольника
- Средняя линия треугольника
- Высота треугольника
- Свойства
- Доказательство
- Площадь круга, вписанного в равносторонний треугольник: решение
- Содержание:
- Особенности явления
- Способ вычислить площадь круга, вписанного в треугольник
- Задачи
- Основные свойства площадей треугольников
- 🔍 Видео
Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать
Определение
Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.
На рисунке 1 изображена окружность, описанная около
треугольника и окружность, вписанная в треугольник.
ВD = FC = AE — диаметры описанной около треугольника окружности.
O — центр вписанной в треугольник окружности.
Видео:Вписанная и описанная окружность - от bezbotvyСкачать
Формулы
Радиус вписанной окружности в треугольник
r — радиус вписанной окружности.
- Радиус вписанной окружности в треугольник,
если известна площадь и все стороны:
Радиус вписанной окружности в треугольник,
если известны площадь и периметр:
Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:
Радиус описанной окружности около треугольника
R — радиус описанной окружности.
- Радиус описанной окружности около треугольника,
если известна одна из сторон и синус противолежащего стороне угла:
Радиус описанной окружности около треугольника,
если известны все стороны и площадь:
Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:
Площадь треугольника
S — площадь треугольника.
- Площадь треугольника вписанного в окружность,
если известен полупериметр и радиус вписанной окружности:
Площадь треугольника вписанного в окружность,
если известен полупериметр:
Площадь треугольника вписанного в окружность,
если известен высота и основание:
Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:
Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:
[ S = fracab cdot sin angle C ]
Периметр треугольника
P — периметр треугольника.
- Периметр треугольника вписанного в окружность,
если известны все стороны:
Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:
Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:
Сторона треугольника
a — сторона треугольника.
- Сторона треугольника вписанного в окружность,
если известны две стороны и косинус угла между ними:
Сторона треугольника вписанного в
окружность, если известна сторона и два угла:
Средняя линия треугольника
l — средняя линия треугольника.
- Средняя линия треугольника вписанного
в окружность, если известно основание:
Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:
Высота треугольника
h — высота треугольника.
- Высота треугольника вписанного в окружность,
если известна площадь и основание:
Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:
[ h = b cdot sin alpha ]
Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:
Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать
Свойства
- Центр вписанной в треугольник окружности
находится на пересечении биссектрис. - В треугольник, вписанный в окружность,
можно вписать окружность, причем только одну. - Для треугольника, вписанного в окружность,
справедлива Теорема Синусов, Теорема Косинусов
и Теорема Пифагора. - Центр описанной около треугольника окружности
находится на пересечении серединных перпендикуляров. - Все вершины треугольника, вписанного
в окружность, лежат на окружности. - Сумма всех углов треугольника — 180 градусов.
- Площадь треугольника вокруг которого описана окружность, и
треугольника, в который вписана окружность, можно найти по
формуле Герона.
Видео:9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать
Доказательство
Около любого треугольника, можно
описать окружность притом только одну.
окружность и треугольник,
которые изображены на рисунке 2.
окружность описана
около треугольника.
- Проведем серединные
перпендикуляры — HO, FO, EO. - O — точка пересечения серединных
перпендикуляров равноудалена от
всех вершин треугольника. - Центр окружности — точка пересечения
серединных перпендикуляров — около
треугольника описана окружность — O,
от центра окружности к вершинам можно
провести равные отрезки — радиусы — OB, OA, OC.
окружность описана около треугольника,
что и требовалось доказать.
Подводя итог, можно сказать, что треугольник,
вписанный в окружность — это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.
Видео:8 класс, 21 урок, Отношение площадей подобных треугольниковСкачать
Площадь круга, вписанного в равносторонний треугольник: решение
Содержание:
В геометрии встречаются понятия описанной и вписанной геометрических фигур. Описанным будет треугольник, через вершины которого проходит окружность, вписанным – если его стороны соприкасаются с кругом. Такое построение в обоих случаях обладает рядом особенностей, которые применяются на практике и упрощают решение задач. Рассмотрим свойства и формулы для расчёта описанного 3-угольника.
Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Особенности явления
Окружность с центром O, проходящая через одну из точек: D, E либо F обязательно будет лежать и на двух остальных. Прямые, разделяющие углы пополам, или биссектрисы равностороннего треугольника пересекаются в общей точке – центре вписанной окружности, который находится на одинаковом удалении от сторон геометрической фигуры.
Из вышесказанного следуют свойства:
- В треугольник вписывается лишь один круг.
- Его центр находится на одинаковом расстоянии от ближайших точек на сторонах 3-угольника.
- Перпендикуляры, опущенные из центра O, и биссектрисы пересекаются в одной точке, называемой центром вписанной окружности.
Видео:Формулы для вычисления площади правильного многоугольника,его стороны и радиуса вписанной окружностиСкачать
Способ вычислить площадь круга, вписанного в треугольник
Для вычисления площади, если дан только размер стороны правильного треугольника, применяется ряд формул.
S=πr 2 .
a, где:
- a – длина стороны геометрической фигуры;
- r – радиус круга, расположенного внутри многоугольника с тремя равными сторонами.
После подстановки значения получается выражение для вычисления площади вписанной окружности:
.
В задачах могут давать длину сторон, тогда
Выражение для равностороннего треугольника можно записать в виде так как 3-угольник равносторонний. С иной стороны – это полупериметр рассматриваемой геометрической фигуры – p.
Зная это, формула записывается в виде: S = r * p.
Видео:Запомни: все формулы для площади треугольникаСкачать
Задачи
В формулу подставим длину сторон треугольника, после вычислений получим результат.
Вычислить занимаемое вписанным в 3-угольник кругом пространство, если его сторона равна 10 см.
Для вычислений необходимо найти радиус r.
Известно, что он определяется по формуле:
После преобразований выражение упрощается до .
– полупериметр.
Начинаем проводить вычисления.
P = a + a + a = 10 +10 +10 или 10 * 3 = 30 см.
Видео:Задача по геометрии № 25 ОГЭ на отношение площадейСкачать
Основные свойства площадей треугольников
Факт 1.
(bullet) Средние линии треугольника разбивают его на 4 равных треугольника.
Соответственно, площади этих треугольников равны.
Факт 2.
(bullet) Медиана треугольника делит его на два треугольника, равных по площади (равновеликих).
Факт 3.
(bullet) Все 3 медианы треугольника делят его на 6 равновеликих треугольников.
Факт 4.
(bullet) Площади треугольников, имеющих одинаковый угол, относятся как произведения сторон, образующих этот угол.
Факт 5.
(bullet) Площади треугольников, имеющих одинаковое основание, относятся как высоты, проведенные к этим основаниям.
Факт 6.
(bullet) Площади треугольников, имеющих одинаковую высоту, относятся как основания, к которым проведена эта высота.
Факт 7.
(bullet) Если прямые (p) и (q) параллельны, то
Факт 8.
(bullet) Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
(bullet) Отношение периметров подобных треугольников равно коэффициенту подобия.
🔍 Видео
Геометрия 9 класс (Урок№14 - Теорема о площади треугольника.)Скачать
Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать
Геометрия 8 класс : Отношение площадей подобных треугольниковСкачать
Площади треугольников с равным углом.Скачать
100. Теорема о площади треугольникаСкачать
9 класс, 12 урок, Теорема о площади треугольникаСкачать
Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать
Всё про углы в окружности. Геометрия | МатематикаСкачать
Отношение площадей треугольников с равным угломСкачать
Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать
Формула радиуса вписанной окружности треугольника. Геометрия 9 классСкачать