Соединение двух прямых окружностью

Сопряжения в инженерной графике на чертежах с примерами

Содержание:

В очертаниях технических форм часто встречаются плавные переходы от од- ной линии к другой. Плавный переход одной линии в другую, выполненный при помощи промежуточной линии, называется сопряжением. Построение сопряжений основано на следующих положениях геометрии.

  1. Переход окружности в прямую будет плавным только тогда, когда заданная прямая является касательной к окружности (рис. 11а). Радиус окружности, проведенный в точку касания К, перпендикулярен к касательной прямой.
  2. Переход от одной окружности к другой в точке К только тогда будет плавным, когда окружности имеют в данной точке общую касательную (рис. 11б).

Соединение двух прямых окружностью

Точка касания К и центры окружностей Соединение двух прямых окружностью

  • Центром сопряжения О называется точка, равноудаленная от сопрягаемых линий (рис. 12).
  • Точкой сопряжения А (В) называется точка касания двух сопрягаемых линий (рис. 12).
  • Дуга сопряжения АВ – это дуга окружности, с помощью которой выполняется сопряжение (рис. 12).
  • Радиус сопряжения R – это радиус дуги сопряжения (рис. 12).

Для выполнения сопряжений необходимо определить три элемента построения: 1) радиус сопряжения; 2) центр сопряжения; 3) точки сопряжения.

Содержание
  1. Сопряжение двух пересекающихся прямых линий
  2. Сопряжения прямой с окружностью
  3. Сопряжение двух окружностей
  4. Построение касательных
  5. Сопряжение двух параллельных прямых
  6. Проведение касательной к окружности
  7. Проведение прямой, касательной к двум окружностям
  8. Сопряжение дуги и прямой дугой заданного радиуса
  9. Сопряжение двух дуг дугой заданного радиуса
  10. Последовательность построения
  11. Построение эллипса
  12. Сопряжения
  13. Сопряжение углов (Сопряжение пересекающихся прямых)
  14. Сопряжение прямого угла(Сопряжение пересекающихся прямых под прямым углом)
  15. Сопряжение острого угла(Сопряжение пересекающихся прямых под острым углом)
  16. Сопряжение тупого угла(Сопряжение пересекающихся прямых под тупым углом)
  17. Сопряжение параллельных прямых линий
  18. Сопряжение окружностей(дуг) с прямой линией
  19. Внешнее сопряжение дуги и прямой линии
  20. Внутреннее сопряжение прямой линии с дугой
  21. Сопряжение окружностей (дуг)
  22. Внешнее сопряжение дуг окружностей
  23. Внутреннее сопряжение дуг окружностей
  24. Смешанное сопряжение дуг окружностей
  25. 🔥 Видео

Видео:Сопряжение двух пересекающихся прямых. Урок 9. (Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать

Сопряжение двух пересекающихся прямых. Урок 9. (Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)

Сопряжение двух пересекающихся прямых линий

Пусть даны две пересекающиеся прямые m, n и радиус сопряжения R (рис. 12). Необходимо построить сопряжение данных прямых дугой окружности радиусом R.

Соединение двух прямых окружностью

Выполним следующие построения:

  1. Построим множество точек центров сопряжения, удаленных от прямой n на расстояние радиуса R сопряжения. Таким множеством является прямая Соединение двух прямых окружностьюпараллельная данной прямой n и отстоящая от неё на расстояние R.
  2. Построим множество точек центров сопряжения, удаленных от прямой m на расстояние радиуса сопряжения. Таким множеством является прямая Соединение двух прямых окружностьюпараллельная m и отстоящая от последней на расстояние R.
  3. В пересечении построенных прямых Соединение двух прямых окружностьюнайдем центр сопряжения О.
  4. Определим точку А сопряжения на прямой n. Для этого опустим из центра О перпендикуляр на прямую n . Для определения точки сопряжения В на прямой m необходимо опустить соответственно перпендикуляр из центра О на прямую m.

Проведем дугу сопряжения AB. Теперь будут определены все элементы сопряжения: радиус, центр и точки сопряжения.

Видео:Сопряжение прямой с окружностьюСкачать

Сопряжение прямой с окружностью

Сопряжения прямой с окружностью

Сопряжение прямой с окружностью может быть внешним или внутренним. Рассмотрим построение внешнего сопряжения прямой с окружностью.

Пример 1. Пусть задана окружность радиусом R с центром в точке Соединение двух прямых окружностьюи прямая m. Требуется построить сопряжение окружности с прямой дугой окружности заданного радиуса R (рис. 13).

Для решения задачи выполним следующие построения:

  1. Построим множество точек центров сопряжения, удаленных от сопрягаемой прямой на расстояние R. Это множество задает прямая Соединение двух прямых окружностьюпараллельная m и отстоящая от неё на расстояние R.
  2. Множество точек центров сопряжения, удаленных от окружности n на рас- стояние R, есть окружность Соединение двух прямых окружностьюпроведенная радиусом Соединение двух прямых окружностью
  3. Центр сопряжения О находим как точку пересечения линий Соединение двух прямых окружностью
  4. Точку сопряжения А находим как основание перпендикуляра, проведенного из точки О на прямую m. Чтобы построить точку сопряжения В, необходимо про- вести линию центров Соединение двух прямых окружностьют.е. соединить центры сопряженных дуг. В пересечении линии центров с заданной окружностью определим точку В.
  5. Проведем дугу сопряжения АВ.

Соединение двух прямых окружностьюСоединение двух прямых окружностью

Пример 2. При построении внутреннего сопряжения (рис. 14) последовательность построений остается та же, что и в примере 1. Однако центр сопряжения определяется с помощью вспомогательной дуги окружности, проведенной из центра Соединение двух прямых окружностью, радиусом Соединение двух прямых окружностью

Видео:1 2 4 сопряжение окружностейСкачать

1 2 4  сопряжение окружностей

Сопряжение двух окружностей

Сопряжение двух окружностей может быть внешним, внутренним и смешанным. Пусть задан радиус сопряжения R, а центры сопряжения и точки сопряжения следует найти.

Пример 1. Построим сопряжение с внешним касанием двух данных окружностей m и n с радиусами Соединение двух прямых окружностьюдугой заданного радиуса R (рис. 15а).

  1. Для нахождения центра сопряжения О проведем окружность Соединение двух прямых окружностьюудаленную от данной окружности m на расстояние R . Так как сопряжение с внешним касанием, то радиус окружности Соединение двух прямых окружностьюравен Соединение двух прямых окружностью
  2. Радиусом Соединение двух прямых окружностьюпроведем окружность Соединение двух прямых окружностью, удаленную от данной окружности n на расстояние R.
  3. Найдем центр сопряжения О как точку пересечения окружностей Соединение двух прямых окружностью.
  4. Найдем точку сопряжения А как пересечение линии центров Соединение двух прямых окружностьюс дугой m.
  5. Аналогично найдем точку В как пересечение линии центров Соединение двух прямых окружностьюс дугой n .
  6. Проведем дугу сопряжения АВ.

Соединение двух прямых окружностью

Пример 2. Построим сопряжение с внутренним касанием двух данных окружностей m и n с радиусами Соединение двух прямых окружностьюдугой радиусом R (рис. 15б).

  1. Для нахождения центра сопряжения О проведем окружность Соединение двух прямых окружностьюна расстоянии Соединение двух прямых окружностьюот данной окружности m.
  2. Проведем окружность Соединение двух прямых окружностьюна расстоянии Соединение двух прямых окружностьюот данной окружности n.
  3. Центр сопряжения О найдем как точку пересечения окружностей Соединение двух прямых окружностью
  4. Точку сопряжения А найдем как точку пересечения линии центров Соединение двух прямых окружностьюс заданной окружностью m.
  5. Точку сопряжения В найдем как точку пересечения линии центров Соединение двух прямых окружностьюc заданной окружностью n.
  6. Проведем дугу сопряжения AВ с центром в точке O.

Пример 3. На рис. 16 приведен пример построения сопряжения с внешне- внутренним касанием.

Соединение двух прямых окружностью

Видео:Сопряжение прямыхСкачать

Сопряжение прямых

Построение касательных

Пример 1. Дана окружность с центром в точке Соединение двух прямых окружностьюи точка Соединение двух прямых окружностьювне её. Через данную точку Соединение двух прямых окружностьюпровести касательную к данной окружности (рис. 17).

Соединение двух прямых окружностью

Для решения задачи выполним следующие построения.

  1. Соединим точку Соединение двух прямых окружностьюс центром окружности Соединение двух прямых окружностью
  2. Находим середину С отрезка Соединение двух прямых окружностью
  3. Из точки С, как из центра, проведем вспомогательную окружность радиусом Соединение двух прямых окружностью
  4. В точке пересечения вспомогательной окружности с заданной получим точку касания А. Соединим точку Соединение двух прямых окружностьюс точкой А.

Пример 2. Построим общую касательную АВ к двум заданным окружностям радиусов Соединение двух прямых окружностью(рис. 18).

Соединение двух прямых окружностью

  1. Находим середину С отрезка Соединение двух прямых окружностью
  2. Из точки С, как из центра, радиусом Соединение двух прямых окружностьюпроведем вспомогательную окружность.
  3. Из центра большей окружности Соединение двух прямых окружностьюпроведем вторую вспомогательную окружность радиусом Соединение двух прямых окружностью
  4. Пересечение двух вспомогательных окружностей определяет точку К, через которую проходит радиус Соединение двух прямых окружностьюидущий в точку касания В. 5. Для построения второй точки касания А проведем Соединение двух прямых окружностью
  5. Соединим точки А и В отрезком прямой линии.
Рекомендую подробно изучить предметы:
  1. Инженерная графика
  2. Начертательная геометрия
  3. Компас
  4. Автокад
  5. Черчение
  6. Проекционное черчение
  7. Аксонометрическое черчение
  8. Строительное черчение
  9. Техническое черчение
  10. Геометрическое черчение
Ещё лекции с примерами решения и объяснением:
  • Нанесение размеров на чертежах
  • Резьба на чертеже
  • Соединения разъемные и неразъемные в инженерной графике
  • Виды конструкторских документов
  • Виды в инженерной графике
  • Разрезы в инженерной графике
  • Сечения в инженерной графике
  • Выносные элементы в инженерной графике

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:СОПРЯЖЕНИЕ ОКРУЖНОСТИ С ЛИНИЕЙ [pairing the circle with the line]Скачать

СОПРЯЖЕНИЕ ОКРУЖНОСТИ С ЛИНИЕЙ [pairing the circle with the line]

Сопряжение двух параллельных прямых

Заданы две параллельные прямые и на одной из них точка сопряжения М (рис. 2.19, а). Требуется построить сопряжение.

Построение выполняют следующим образом:

  • 1) находят центр сопряжения и радиус дуги (рис. 2.19, б). Для этого из точки М восставляют перпендикуляр до пересечения с прямой в точке N. Отрезок MN делят пополам (см. рис. 2.7);
  • 2) из точки О – центра сопряжения радиусом ОМ = ON описывают дугу от точек сопряжения М и N (рис. 2.19, в).

Соединение двух прямых окружностью

Рис. 2.19. Построение сопряжения двух параллельных прямых

Видео:Сопряжение окружностейСкачать

Сопряжение окружностей

Проведение касательной к окружности

Даны окружность с центром О и точка А. Требуется провести из точки А касательную к окружности.

1. Точку А соединяют прямой с заданным центром О окружности.

Строят вспомогательную окружность диаметром, равным ОА (рис. 2.20, а). Чтобы найти центр О1, делят отрезок ОА пополам (см. рис. 2.7).

2. Точки M и N пересечения вспомогательной окружности с заданной – искомые точки касания. Точку А соединяют прямыми с точками М или N (рис. 2.20, б). Прямая AM будет перпендикулярна прямой ОМ, так как угол АМО опирается на диаметр.

Соединение двух прямых окружностью

Рис. 2.20. Проведение касательной к окружности

Видео:СОПРЯЖЕНИЕ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ. [pairing parallel lines]Скачать

СОПРЯЖЕНИЕ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ. [pairing parallel lines]

Проведение прямой, касательной к двум окружностям

Даны две окружности радиусов R и R1. Требуется построить прямую, касательную к ним.

Различают два случая касания: внешнее (рис. 2.21, б) и внутреннее (рис. 2.21, в).

При внешнем касании построение выполняют следующим образом:

  • 1) из центра О проводят вспомогательную окружность радиусом, равным разности радиусов заданных окружностей, т.е. R – R1 (рис. 2.21, а). К этой окружности из центра О1 проводят касательную прямую Ο1Ν. Построение касательной показано на рис. 2.20;
  • 2) радиус, проведенный из точки О в точку Ν, продолжают до пересечения в точке М с заданной окружностью радиуса R. Параллельно радиусу ОМ проводят радиус Ο1Ρ меньшей окружности. Прямая, соединяющая точки сопряжений М и Р, – касательная к заданным окружностям (рис. 2.21, б).

Соединение двух прямых окружностью

Рис. 2.21. Проведение касательной к двум окружностям

При внутреннем касании построение проводят аналогично, но вспомогательную окружность проводят радиусом, равным сумме радиусов R + R1 (рис. 2.21, в). Затем из центра О1 проводят касательную к вспомогательной окружности (см. рис. 2.20). Точку N соединяют радиусом с центром О. Параллельно радиусу ON проводят радиус O1Р меньшей окружности. Искомая касательная проходит через точки сопряжений М и Р.

Видео:Черчение. Внутреннее, внешнее и смешенное сопряжение двух окружностей.Скачать

Черчение. Внутреннее, внешнее и смешенное сопряжение двух окружностей.

Сопряжение дуги и прямой дугой заданного радиуса

Даны дуга окружности радиуса R и прямая. Требуется соединить их дугой радиуса R1.

  • 1. Находят центр сопряжения (рис. 2.22, а), который должен находиться на расстоянии R1 от дуги и от прямой. Поэтому проводят вспомогательную прямую, параллельную заданной прямой, на расстоянии, равном радиусу сопрягающей дуги R1) (рис. 2.22, а). Раствором циркуля, равным сумме заданных радиусов R + R1 описывают из центра О дугу до пересечения со вспомогательной прямой. Полученная точка О1 – центр сопряжения.
  • 2. По общему правилу находят точки сопряжения (рис. 2.22, б): соединяют прямой центры сопрягаемых дуг O1 и О и опускают из центра сопряжения Ο1 перпендикуляр на заданную прямую.
  • 3. Из центра сопряжения Οχ между точками сопряжения Μ и Ν проводят дугу, радиус которой R1 (рис. 2.22, б).

Соединение двух прямых окружностью

Рис. 2.22. Построение сопряжения окружности и прямой

Видео:Сопряжение острого углаСкачать

Сопряжение острого угла

Сопряжение двух дуг дугой заданного радиуса

Даны две дуги, радиусы которых R1 и R2. Требуется построить сопряжение дугой, радиус которой задан.

Различают три случая касания: внешнее (рис. 2.23, а, б), внутреннее (рис. 2.23, в) и смешанное (см. рис. 2.25). Во всех случаях центры сопряжений должны быть расположены от заданных дуг на расстоянии радиуса дуги сопряжения.

Соединение двух прямых окружностью

Рис. 2.23. Построение сопряжения двух дуг окружностей

Построение выполняют следующим образом:

Для внешнего касания:

  • 1) из центров Ο1 и О2 раствором циркуля, равным сумме радиусов заданной и сопрягающей дуг, проводят вспомогательные дуги (рис. 2.23, а); радиус дуги, проведенной из центра Ο1, равен R1 + R3; а радиус дуги, проведенной из центра O2, равен R2 + R3. На пересечении вспомогательных дуг расположен центр сопряжения – точка O3;
  • 2) соединив прямыми точку Ο1 с точкой 03 и точку O2 с точкой O3, находят точки сопряжения M и N (рис. 2.23, б);
  • 3) из точки 03 раствором циркуля, равным R3, между точками Μ и Ν описывают сопрягающую дугу.

Для внутреннего касания выполняют те же построения, но радиусы дуг берут равными разности радиусов заданной и сопрягающей дуг, т.е. R4 – R1 и R4 – R2. Точки сопряжения Р и К лежат на продолжении линий, соединяющих точку O4 с точками O1 и O2 (рис. 2.23, в).

Для смешанного (внешнего и внутреннего) касания (1-й случай):

  • 1) раствором циркуля, равным сумме радиусов R1 и R3, из точки O2, как из центра, проводят дугу (рис. 2.24, а);
  • 2) раствором циркуля, равным разности радиусов R2 и R3, из точки O2 проводят вторую дугу, пересекающуюся с первой в точке O3 (рис. 2.24, б);
  • 3) из точки О1 проводят прямую линию до точки O3, из второго центра (точка O2) проводят прямую через точку O3 до пересечения с дугой в точке М (рис. 2.24, в).

Точка O3 является центром сопряжения, точки М и N – точками сопряжения;

4) поставив ножку циркуля в точку O3, радиусом R3 проводят дугу между точками сопряжения Μ и Ν (рис. 2.24, г).

Соединение двух прямых окружностью

Рис. 2.24. Построение сопряжения двух дуг окружностей при сочетании внешнего и внутреннего касания

Для смешанного касания (2-й случай):

  • 1) две сопрягаемые дуги окружностей радиусов R1 и R2 (рис. 2.25);
  • 2) расстояние между центрами О i и O2 этих двух дуг;
  • 3) радиус R3 сопрягающей дуги;
  • 1) определить положение центра O3 сопрягающей дуги;
  • 2) найти на сопрягаемых дугах точки сопряжения;
  • 3) провести дугу сопряжения

Видео:Построение сопряжения двух прямых, прямой и окружностиСкачать

Построение сопряжения двух прямых, прямой и окружности

Последовательность построения

Откладывают заданные расстояния между центрами Ο1 и O2. Из центра О1 проводят вспомогательную дугу радиусом равным сумме радиусов сопрягаемой дуги радиуса R1 и сопрягающей дуги радиуса R3, а из центра O2 проводят вторую вспомогательную дугу радиусом, равным разности радиусов R3 и R2, до пересечения с первой вспомогательной дугой в точке O3, которая будет искомым центром сопрягающей дуги (рис. 2.25).

Соединение двух прямых окружностью

Рис. 2.25. Построение сопряжения двух дуг окружностей при смешанном касании

Точки сопряжения находят по общему правилу, соединяя прямыми центры дуг O3 и O1, O3 и O2. На пересечении этих прямых с дугами соответствующих окружностей находят точки М и N.

В технике встречаются детали, поверхности которых ограничены плоскими кривыми: эллипсом, эвольвентной окружностью, спиралью Архимеда и др. Такие кривые линии нельзя вычертить циркулем.

Их строят по точкам, которые соединяют плавными линиями с помощью лекал. Отсюда название лекальные кривые.

Эвольвента окружности приведена на рис. 2.26. Каждая точка прямой, если ее катить без скольжения по окружности, описывает эвольвенту.

Соединение двух прямых окружностью

Рис. 2.26. Эвольвента окружности

Рабочие поверхности зубьев большинства зубчатых колес имеют эвольвентное зацепление (рис. 2.27).

Соединение двух прямых окружностью

Рис. 2.27. Зубья эвольвентного профиля

Спираль Архимеда изображена на рис. 2.28. Это плоская кривая, которую описывает точка, равномерно движущаяся от центра О по вращающемуся радиусу.

Соединение двух прямых окружностью

Рис. 2.28. Эвольвента окружности

По спирали Архимеда нарезают канавку, в которую входят выступы кулачков самоцентрирующего трехкулачкового патрона токарного станка (рис. 2.29). При вращении конической шестерни, на обратной стороне которой нарезана спиральная канавка, кулачки сжимаются.

При выполнении этих (и других) лекальных кривых на чертеже можно для облегчения работы воспользоваться справочником.

Видео:«Построение сопряжения двух пересекающихся прямых под тупым углом дугой заданного радиуса R»Скачать

«Построение сопряжения двух пересекающихся прямых под тупым углом дугой заданного радиуса R»

Построение эллипса

Размеры эллипса определяются величиной его большой АВ и малой CD осей (рис. 2.30). Описывают две концентрические окружности. Диаметр большей равен длине эллипса (большой оси АВ), диаметр меньшей – ширине эллипса (малой оси CD). Делят большую окружность на равные части, например на 12. Точки деления соединяют прямыми, проходящими через центр окружностей. Из точек пересечения прямых с окружностями проводят линии, параллельные осям эллипса, как показано на рисунке. При взаимном пересечении этих линий получают точки, принадлежащие эллипсу, которые, соединив предварительно от руки тонкой плавной кривой, обводят с помощью лекала.

Соединение двух прямых окружностью

Рис. 2.29. Зубья эвольвентного профиля

Соединение двух прямых окружностью

Рис. 2.30. Построение эллипса

Практическое применение геометрических построений

Дано задание: выполнить чертеж ключа, показанного на рис. 2.31. Как это сделать?

Прежде чем начинать чертить, проводят анализ графического состава изображения, чтобы установить, какие случаи геометрических построений необходимо применить. На рис. 2.31 показаны эти построения.

Соединение двух прямых окружностью

Рис. 2.31. Анализ контура изображения ключа

Чтобы вычертить ключ, нужно провести взаимно перпендикулярные прямые, описать окружности, построить шестиугольники, соединив верхние и нижние их вершины прямыми, выполнить сопряжение дуг и прямых дугами заданного радиуса.

Какова последовательность этой работы?

Вначале проводят те линии, положение которых определено заданными размерами и не требует дополнительных построений (рис. 2.32, а), т.е. проводят осевые и центровые линии, описывают по заданным размерам четыре окружности и соединяют концы вертикальных диаметров меньших окружностей прямыми линиями.

Соединение двух прямых окружностью

Рис. 2.32. Последовательность выполнения геометрических построений при вычерчивании ключа

Дальнейшая работа по выполнению чертежа требует применения изложенных в п. 2.2 и 2.3 геометрических построений.

В данном случае нужно построить шестиугольники и выполнить сопряжение дуг с прямыми (рис. 2.32, б). Это и будет второй этап работы.

Видео:Сопряжение прямого углаСкачать

Сопряжение прямого угла

Сопряжения

В этой небольшой статье, будут рассмотрены основные виды сопряжений и Вы узнаете о том, как построить сопряжение углов, прямых линий, окружностей и дуг, окружностей с прямой.

Сопряжением называют плавный переход одной линии в другую. Для того чтобы построить сопряжение, нужно найти центр сопряжения и точки сопряжений.

Точка сопряжения – это общая точка для сопрягаемых линий. Точку сопряжения также называют точкой перехода.

Ниже будут рассмотрены основные типы сопряжений.

Видео:Сопряжение двух окружностей по касательной прямойСкачать

Сопряжение двух окружностей по касательной прямой

Сопряжение углов (Сопряжение пересекающихся прямых)

Сопряжение прямого угла(Сопряжение пересекающихся прямых под прямым углом)

В данном примере будет рассмотрено построение сопряжения прямого угла заданным радиусом сопряжения R. Первым делом найдём точки сопряжения. Для нахождения точек сопряжения, нужно поставить циркуль в вершину прямого угла и провести дугу радиусом R до пересечения со сторонами угла. Полученные точки и будут являться точками сопряжения. Далее нужно найти центр сопряжения. Центром сопряжения будет точка равноудалённая от сторон угла. Проведём из точек a и b две дуги радиусом сопряжения R до пересечения друг с другом. Полученная на пересечении точка О и будет центром сопряжения. Теперь из центра сопряжения точки О описываем дугу радиусом сопряжения R от точки a до точки b. Сопряжение прямого угла построено.

Соединение двух прямых окружностью

Сопряжение острого угла(Сопряжение пересекающихся прямых под острым углом)

Ещё один пример сопряжения угла. В этом примере будет построено сопряжение
острого угла
. Для построения сопряжения острого угла раствором циркуля,равным радиусу сопряжения R, проведём из двух произвольных точек на каждой стороне угла по две дуги. Затем проведём касательные к дугам до пересечения в точке О, центре сопряжения. Из полученного центра сопряжения опустим перпендикуляр к каждой из сторон угла. Так мы получим точки сопряжения a и b. Затем проведём из центра сопряжения, точки О, дугу радиусом сопряжения R, соединив точки сопряжения a
и b. Сопряжение острого угла построено.

Соединение двух прямых окружностью

Сопряжение тупого угла(Сопряжение пересекающихся прямых под тупым углом)

Сопряжение тупого угла строится по аналогии с сопряжением острого угла. Мы также, сначала радиусом сопряжения R проводим по две дуги из двух произвольно взятых точек на каждой из сторон, а затем проводим касательные к этим дугам до пересечения в точке О, центре сопряжения. Затем опускаем перпендикуляры из центра сопряжения к каждой из сторон и соединяем дугой, равной радиусу сопряжения тупого угла R, полученные точки a и b.

Соединение двух прямых окружностью

Видео:Сопряжение двух окружностейСкачать

Сопряжение двух окружностей

Сопряжение параллельных прямых линий

Построим сопряжение двух параллельных прямых. Нам задана точка сопряжения a, лежащая на одной прямой. Из точки a проведём перпендикуляр до пересечения его с другой прямой в точке b. Точки a и b являются точками сопряжения прямых линий. Проведя из каждой точки дугу, радиусом больш отрезка ab, найдём центр сопряжения — точку О. Из центра сопряжения проведём дугу заданного радиуса сопряжения R.

Соединение двух прямых окружностью

Видео:СОПРЯЖЕНИЯ ПЕРЕСЕКАЮЩИХСЯ ПРЯМЫХ. [pairing intersecting straight lines]Скачать

СОПРЯЖЕНИЯ ПЕРЕСЕКАЮЩИХСЯ ПРЯМЫХ. [pairing intersecting straight lines]

Сопряжение окружностей(дуг) с прямой линией

Внешнее сопряжение дуги и прямой линии

В этом примере будет построено сопряжение заданным радиусом r прямой линии, заданной отрезком AB, и дуги окружности радиусом R.

Сначала найдём центр сопряжения. Для этого проведём прямую, параллельную отрезку AB и отстоящую от него на расстояние радиуса сопряжения r, и дугу, из центра окружности O R радиусом R+r. Точка пересечения дуги и прямой и будет центром сопряжения – точкой О r .

Из центра сопряжения, точки О r , опустим перпендикуляр на прямую AB. Точка D, полученная на пересечении перпендикуляра и отрезка AB, и будет точкой сопряжения. Найдём вторую точку сопряжения на дуге окружности. Для этого соединим центр окружности О R и центр сопряжения О r линией. Получим вторую точку сопряжения – точку C. Из центра сопряжения проведём дугу сопряжения радиусом r, соединив точки сопряжения.

Соединение двух прямых окружностью

Внутреннее сопряжение прямой линии с дугой

По аналогии строится внутреннее сопряжение прямой линии с дугой. Рассмотрим пример построения сопряжения радиусом r прямой линии, заданной отрезком AB, и дуги окружности радиуса R. Найдём центр сопряжения. Для этого построим прямую, параллельную отрезку AB и отстоящую от него на расстояние радиуса r, и дугу, из центра окружности O R радиусом R-r. Точка О r , полученная на пересечении прямой и дуги, и будет центром сопряжения.

Из центра сопряжения(точка О r ) опустим перпендикуляр на прямую AB. Точка D, полученная на основании перпендикуляра, и будет точкой сопряжения.

Для нахождения второй точки сопряжения на дуге окружности, соединим центр сопряжения Оr и центр окружности О R прямой линией. На пересечении линии с дугой окружности получим вторую точку сопряжения – точку C. Из точки О r , центра сопряжения, проведём дугу радиусом r, соединив точки сопряжения.

Соединение двух прямых окружностью

Видео:Построение ВНЕШНЕГО СОПРЯЖЕНИЯСкачать

Построение ВНЕШНЕГО СОПРЯЖЕНИЯ

Сопряжение окружностей (дуг)

Внешнее сопряжение дуг окружностей

Внешним сопряжением считается сопряжение, при котором центры сопрягаемых окружностей(дуг) O1( радиус R1) и O2 (радиус R2) располагаются за сопрягающей дугой радиуса R. На примере рассмотрено внешнее сопряжение дуг. Сначала находим центр сопряжения. Центром сопряжения является точка пересечения дуг окружностей с радиусами R+R1 и R+R2, построенных из центров окружностей O1(R1) и O2(R2) соответственно. Затем центры окружностей O1 и O2 соединяем прямыми с центром сопряжения, точкой O, и на пересечении линий с окружностями O1 и O2 получаем точки сопряжения A и B. После этого, из центра сопряжения строим дугу заданного радиуса сопряжения R и соединяем ей точки A и B.

Соединение двух прямых окружностью

Внутреннее сопряжение дуг окружностей

Внутренним сопряжением называется сопряжение, при котором центры сопрягаемых дуг O1, радиуса R1, и O2, радиус R2, располагаются внутри сопрягающей их дуги заданного радиуса R. На картинке ниже приведён пример построения внутреннего сопряжения окружностей(дуг). Вначале мы находим центр сопряжения, которым является точка O, точка пересечения дуг окружностей с радиусами R-R1 и R-R2 проведённых из центров окружностей O1и O2 соответственно. После чего соединяем центры окружностей O1 и O2 прямыми линиями с центром сопряжения и на пересечении линий с окружностями O1 и O2 получаем точки сопряжения A и B. Затем из центра сопряжения строим дугу сопряжения радиуса R и строим сопряжение.

Соединение двух прямых окружностью

Смешанное сопряжение дуг окружностей

Смешанным сопряжением дуг является сопряжение, при котором центр одной из сопрягаемых дуг (O1) лежит за пределами сопрягающей их дуги радиуса R, а центр другой окружности(O2) – внутри её. На иллюстрации ниже приведён пример смешанного сопряжения окружностей. Сначала находим центр сопряжения, точку O. Для нахождения центра сопряжения строим дуги окружностей с радиусами R+R1, из центра окружности радиуса R1 точки O1, и R-R2, из центра окружности радиуса R2 точки O2. После чего соединяем центр сопряжения точку O с центрами окружностей O1 и O2 прямыми и на пересечении с линиями соответствующих окружностей получаем точки сопряжения A и B. Затем строим сопряжение.

🔥 Видео

Сопряжение двух прямыхСкачать

Сопряжение двух прямых

Построение ВНУТРЕННЕГО СОПРЯЖЕНИЯСкачать

Построение ВНУТРЕННЕГО СОПРЯЖЕНИЯ

Черчение. Сопряжение на чертеже.Скачать

Черчение. Сопряжение на чертеже.

Сопряжение прямой и окружностиСкачать

Сопряжение прямой и окружности
Поделиться или сохранить к себе: