Синус центрального угла окружности

Теорема синусов

Синус центрального угла окружности

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Доказательство теоремы синусов

Теорема синусов звучит так: стороны треугольника пропорциональны синусам противолежащих углов.

Нарисуем стандартный треугольник и запишем теорему формулой:

Синус центрального угла окружности

Формула теоремы синусов:

Синус центрального угла окружности

Докажем теорему с помощью формулы площади треугольника через синус его угла.

Синус центрального угла окружности

Из этой формулы мы получаем два соотношения:


    Синус центрального угла окружности

Синус центрального угла окружности
На b сокращаем, синусы переносим в знаменатели:
Синус центрального угла окружности

  • Синус центрального угла окружности
    bc sinα = ca sinβ
    Синус центрального угла окружности
  • Из этих двух соотношений получаем:

    Синус центрального угла окружности

    Теорема синусов для треугольника доказана.

    Эта теорема пригодится, чтобы найти:

    • Стороны треугольника, если даны два угла и одна сторона.
    • Углы треугольника, если даны две стороны и один прилежащий угол.

    Видео:ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать

    ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный Угол

    Доказательство следствия из теоремы синусов

    У теоремы синусов есть важное следствие. Нарисуем треугольник, опишем вокруг него окружность и рассмотрим следствие через радиус.

    Синус центрального угла окружности

    Синус центрального угла окружности

    где R — радиус описанной около треугольника окружности.

    Так образовались три формулы радиуса описанной окружности:

    Синус центрального угла окружности

    Основной смысл следствия из теоремы синусов заключен в этой формуле:

    Синус центрального угла окружности

    Радиус описанной окружности не зависит от углов α, β, γ. Удвоенный радиус описанной окружности равен отношению стороны треугольника к синусу противолежащего угла.

    Для доказательства следствия теоремы синусов рассмотрим три случая.

    1. Угол ∠А = α — острый в треугольнике АВС.

    Синус центрального угла окружности

    Проведем диаметр BA1. В этом случае точка А и точка А1 лежат в одной полуплоскости от прямой ВС.

    Используем теорему о вписанном угле и видим, что ∠А = ∠А1 = α. Треугольник BA1C — прямоугольный, в нём ∠ BCA1 = 90°, так как он опирается на диаметр BA1.

    Чтобы найти катет a в треугольнике BA1C, нужно умножить гипотенузу BA1 на синус противолежащего угла.

    BA1 = 2R, где R — радиус окружности

    Следовательно: R = α/2 sinα

    Для острого треугольника с описанной окружностью теорема доказана.

    2. Угол ∠А = α — тупой в треугольнике АВС.

    Проведем диаметр окружности BA1. Точки А и A1 по разные стороны от прямой ВС. Четырёхугольник ACA1B вписан в окружность, и его основное свойство в том, что сумма противолежащих углов равна 180°.

    Следовательно, ∠А1 = 180° — α.

    Синус центрального угла окружности

    Вспомним свойство вписанного в окружность четырёхугольника:

    Синус центрального угла окружности

    Также известно, что sin(180° — α) = sinα.

    В треугольнике BCA1 угол при вершине С равен 90°, потому что он опирается на диаметр. Следовательно, катет а мы находим таким образом:

    α = 2R sin (180° — α) = 2R sinα

    Следовательно: R = α/2 sinα

    Для тупого треугольника с описанной окружностью теорема доказана.

    Часто используемые тупые углы:

    • sin120° = sin(180° — 60°) = sin60° = 3/√2;
    • sin150° = sin(180° — 30°) = sin30° = 1/2;
    • sin135° = sin(180° — 45°) = sin45° = 2/√2.

    3. Угол ∠А = 90°.

    Синус центрального угла окружности

    В прямоугольнике АВС угол А прямой, а противоположная сторона BC = α = 2R, где R — это радиус описанной окружности.

    Синус центрального угла окружности

    Для прямоугольного треугольника с описанной окружностью теорема доказана.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Видео:ЦЕНТРАЛЬНЫЙ угол ВПИСАННЫЙ угол окружности 8 класс АтанасянСкачать

    ЦЕНТРАЛЬНЫЙ угол ВПИСАННЫЙ угол окружности 8 класс Атанасян

    Теорема о вписанном в окружность угле

    Из теоремы синусов и ее следствия можно сделать любопытный вывод: если известна одна сторона треугольника и синус противолежащего угла — можно найти и радиус описанной окружности. Но треугольник не задаётся только этими величинами. Это значит, что если треугольник еще не задан, найти радиус описанной окружности возможно.

    Раскроем эту тему на примере теоремы о вписанном в окружность угле и следствиях из нее.

    Теорема о вписанном угле: вписанный в окружность угол измеряется половиной дуги, на которую он опирается.

    Синус центрального угла окружности

    ∠А = α опирается на дугу ВС. Дуга ВС содержит столько же градусов, сколько ее центральный угол ∠BOC.

    Формула теоремы о вписанном угле:

    Синус центрального угла окружности

    Следствие 1 из теоремы о вписанном в окружность угле

    Вписанные углы, опирающиеся на одну дугу, равны.

    Синус центрального угла окружности

    ∠А = ∠BAC опирается на дугу ВС. Поэтому ∠A = 1/2(∠COB).

    Если мы возьмём точки A1, А2. Аn и проведём от них лучи, которые опираются на одну и ту же дугу, то получим:

    Синус центрального угла окружности

    На рисунке изображено множество треугольников, у которых есть общая сторона СВ и одинаковый противолежащий угол. Треугольники являются подобными, и их объединяет одинаковый радиус описанной окружности.

    Следствие 2 из теоремы о вписанном в окружность угле

    Вписанные углы, которые опираются на диаметр, равны 90°, то есть прямые.

    Синус центрального угла окружности

    ВС — диаметр описанной окружности, следовательно ∠COB = 180°.

    Синус центрального угла окружности

    Следствие 3 из теоремы о вписанном в окружность угле

    Сумма противоположных углов вписанного в окружность четырёхугольника равна 180°. Это значит, что:

    Синус центрального угла окружности

    Угол ∠А = α опирается на дугу DCB. Поэтому DCB = 2α по теореме о вписанном угле.

    Угол ∠С = γ опирается на дугу DAB. Поэтому DAB = 2γ.

    Но так как 2α и 2γ — это вся окружность, то 2α + 2γ = 360°.

    Следовательно: α + γ = 180°.

    Поэтому: ∠A + ∠C = 180°.

    Следствие 4 из теоремы о вписанном в окружность угле

    Синусы противоположных углов вписанного четырехугольника равны. То есть:

    sinγ = sin(180° — α)

    Так как sin(180° — α) = sinα, то sinγ = sin(180° — α) = sinα

    Видео:Окружность. Длина хорды. Теорема синусов.Скачать

    Окружность. Длина хорды. Теорема синусов.

    Примеры решения задач

    Теорема синусов и следствия из неё активно используются при решении задач. Рассмотрим несколько примеров, чтобы закрепить материал.

    Пример 1. В треугольнике ABC ∠A = 45°,∠C = 15°, BC = 4√6. Найти AC.

      Согласно теореме о сумме углов треугольника:

    ∠B = 180° — 45° — 15° = 120°

  • Сторону AC найдем по теореме синусов:
    Синус центрального угла окружности
  • Пример 2. Гипотенуза и один из катетов прямоугольного треугольника равны 10 и 8 см. Найти угол, который расположен напротив данного катета.

    В этой статье мы узнали, что в прямоугольном треугольнике напротив гипотенузы располагается угол, равный 90°. Примем неизвестный угол за x. Тогда соотношение сторон выглядит так:

    Синус центрального угла окружности

    Синус центрального угла окружности

    Значит x = sin (4/5) ≈ 53,1°.

    Ответ: угол составляет примерно 53,1°.

    Видео:Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

    Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

    Запоминаем

    Обычная теорема: стороны треугольника пропорциональны синусам противолежащих углов.

    >
    Синус центрального угла окружности

    Расширенная теорема: в произвольном треугольнике справедливо следующее соотношение:

    Видео:Центральный угол в окружностиСкачать

    Центральный угол в окружности

    Геометрия. Урок 5. Окружность

    Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

    Синус центрального угла окружности

    Видео-уроки на канале Ёжику Понятно. Подпишись!

    Содержание страницы:

    • Определение окружности
    • Отрезки в окружности

    Видео:Вписанные и центральные углы #огэ #огэматематика #математикаСкачать

    Вписанные и центральные углы #огэ #огэматематика #математика

    Определение окружности

    Окружность – геометрическое место точек, равноудаленных от данной точки.

    Эта точка называется центром окружности .

    Синус центрального угла окружности

    Видео:Длина дуги окружности. 9 класс.Скачать

    Длина дуги окружности. 9 класс.

    Отрезки в окружности

    Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.

    Хорда a – отрезок, соединяющий две точки на окружности.

    Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).

    O A – радиус, D E – хорда, B C – диаметр.

    Теорема 1:
    Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.

    Касательная к окружности – прямая, имеющая с окружностью одну общую точку.

    Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.

    Теорема 2:
    Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).

    Теорема 3:
    Касательная перпендикулярна радиусу, проведенному к точке касания.

    Видео:ЗНАЧЕНИЯ СИНУСА И КОСИНУСА НА ОКРУЖНОСТИСкачать

    ЗНАЧЕНИЯ СИНУСА И КОСИНУСА НА ОКРУЖНОСТИ

    Дуга в окружности

    Часть окружности, заключенная между двумя точками, называется дугой окружности .

    Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .

    Теорема 4:
    Равные хорды стягивают равные дуги.

    Если A B = C D , то ∪ A B = ∪ C D

    Видео:Углы, вписанные в окружность. 9 класс.Скачать

    Углы, вписанные в окружность. 9 класс.

    Углы в окружности

    В окружности существует два типа углов: центральные и вписанные.

    Центральный угол – угол, вершина которого лежит в центре окружности.

    ∠ A O B – центральный.

    Центральный угол равен градусной мере дуги, на которую он опирается . ∪ A B = ∠ A O B = α

    Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.

    Градусная мара всей окружности равна 360 ° .

    Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.

    ∠ A C B – вписанный.

    Вписанный угол равен половине градусной меры дуги, на которую он опирается . ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α

    Теорема 5:
    Вписанные углы, опирающиеся на одну и ту же дугу, равны .

    ∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2

    Теорема 6:
    Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .

    ∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °

    Видео:Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |Скачать

    Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |

    Длина окружности, длина дуги

    Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ). Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром. Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .

    Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .

    Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.

    Длина окружности находится по формуле:

    Длина дуги окружности , на которую опирается центральный угол α равна:

    l α = π R 180 ∘ ⋅ α

    Видео:Решение задач на тему центральные и вписанные углы.Скачать

    Решение задач на тему центральные и вписанные углы.

    Площадь круга и его частей

    Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.

    Круг – часть пространства, которая находится внутри окружности.

    Иными словами, окружность – это граница, а круг – это то, что внутри.

    Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.

    Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.

    Площадь круга находится по формуле: S = π R 2

    Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

    Примеры сектора в реальной жизни: кусок пиццы, веер.

    Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α

    Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.

    Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.

    Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.

    S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α

    Видео:Как найти длину дуги окружности центрального угла. Геометрия 8-9 классСкачать

    Как найти длину дуги окружности центрального угла. Геометрия 8-9 класс

    Теорема синусов

    Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:

    a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.

    Видео:Вписанные и центральные углыСкачать

    Вписанные и центральные углы

    Примеры решений заданий из ОГЭ

    Модуль геометрия: задания, связанные с окружностями.

    Видео:Вписанный угол равен половине центрального углаСкачать

    Вписанный угол равен половине центрального угла

    Углы, связанные с окружностью

    Синус центрального угла окружностиВписанные и центральные углы
    Синус центрального угла окружностиУглы, образованные хордами, касательными и секущими
    Синус центрального угла окружностиДоказательства теорем об углах, связанных с окружностью

    Видео:№655. Центральный угол АОВ на 30° больше вписанного угла, опирающегося на дугу АВ. НайдитеСкачать

    №655. Центральный угол АОВ на 30° больше вписанного угла, опирающегося на дугу АВ. Найдите

    Вписанные и центральные углы

    Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

    Синус центрального угла окружности

    Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

    Синус центрального угла окружности

    Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

    Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

    Видео:Вписанные углы в окружностиСкачать

    Вписанные углы в окружности

    Теоремы о вписанных и центральных углах

    Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

    Середина гипотенузы прямоугольного треугольника является центром описанной
    около этого треугольника окружности.

    ФигураРисунокТеорема
    Вписанный уголСинус центрального угла окружности
    Вписанный уголСинус центрального угла окружностиВписанные углы, опирающиеся на одну и ту же дугу равны.
    Вписанный уголСинус центрального угла окружностиВписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
    Вписанный уголСинус центрального угла окружностиДва вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
    Вписанный уголСинус центрального угла окружностиВписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
    Окружность, описанная около прямоугольного треугольникаСинус центрального угла окружности

    Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

    Синус центрального угла окружности

    Вписанные углы, опирающиеся на одну и ту же дугу равны.

    Синус центрального угла окружности

    Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

    Синус центрального угла окружности

    Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

    Синус центрального угла окружности

    Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

    Синус центрального угла окружности

    Середина гипотенузы прямоугольного треугольника является центром описанной
    около этого треугольника окружности.

    Синус центрального угла окружности

    Видео:Окружнось, дуга, длина дуги, центральный угол.Скачать

    Окружнось, дуга, длина дуги, центральный угол.

    Теоремы об углах, образованных хордами, касательными и секущими

    Вписанный угол
    Окружность, описанная около прямоугольного треугольника

    Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

    Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

    Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

    Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

    Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

    ФигураРисунокТеоремаФормула
    Угол, образованный пересекающимися хордамиСинус центрального угла окружностиСинус центрального угла окружности
    Угол, образованный секущими, которые пересекаются вне кругаСинус центрального угла окружностиСинус центрального угла окружности
    Угол, образованный касательной и хордой, проходящей через точку касанияСинус центрального угла окружностиСинус центрального угла окружности
    Угол, образованный касательной и секущейСинус центрального угла окружностиСинус центрального угла окружности
    Угол, образованный двумя касательными к окружностиСинус центрального угла окружностиСинус центрального угла окружности

    Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

    Синус центрального угла окружности

    Синус центрального угла окружности

    Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

    Синус центрального угла окружности

    Синус центрального угла окружности

    Синус центрального угла окружности

    Синус центрального угла окружности

    Угол, образованный пересекающимися хордами хордами
    Синус центрального угла окружности
    Формула: Синус центрального угла окружности
    Угол, образованный секущими секущими , которые пересекаются вне круга
    Формула: Синус центрального угла окружности

    Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

    Угол, образованный касательной и хордой хордой , проходящей через точку касания
    Синус центрального угла окружности
    Формула: Синус центрального угла окружности
    Угол, образованный касательной и секущей касательной и секущей
    Формула: Синус центрального угла окружности

    Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

    Угол, образованный двумя касательными касательными к окружности
    Формулы: Синус центрального угла окружности

    Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

    Видео:Радианная Мера Угла - Как Переводить Градусы в Радианы // Урок Алгебры 10 классСкачать

    Радианная Мера Угла - Как Переводить Градусы в Радианы // Урок Алгебры 10 класс

    Доказательства теорем об углах, связанных с окружностью

    Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

    Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

    Синус центрального угла окружности

    Синус центрального угла окружности

    Синус центрального угла окружности

    Синус центрального угла окружности

    Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

    Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

    Синус центрального угла окружности

    В этом случае справедливы равенства

    Синус центрального угла окружности

    Синус центрального угла окружности

    Синус центрального угла окружности

    и теорема 1 в этом случае доказана.

    Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

    Синус центрального угла окружности

    В этом случае справедливы равенства

    Синус центрального угла окружности

    Синус центрального угла окружности

    Синус центрального угла окружности

    что и завершает доказательство теоремы 1.

    Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

    Доказательство . Рассмотрим рисунок 8.

    Синус центрального угла окружности

    Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

    Синус центрального угла окружности

    Синус центрального угла окружности

    что и требовалось доказать.

    Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

    Доказательство . Рассмотрим рисунок 9.

    Синус центрального угла окружности

    Синус центрального угла окружности

    Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

    Синус центрального угла окружности

    Синус центрального угла окружности

    что и требовалось доказать.

    Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

    Доказательство . Рассмотрим рисунок 10.

    Синус центрального угла окружности

    Синус центрального угла окружности

    Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

    Синус центрального угла окружности

    Синус центрального угла окружности

    что и требовалось доказать

    Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

    Доказательство . Рассмотрим рисунок 11.

    Синус центрального угла окружности

    Синус центрального угла окружности

    Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

    Синус центрального угла окружности

    Синус центрального угла окружности

    что и требовалось доказать.

    Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

    Доказательство . Рассмотрим рисунок 12.

    Синус центрального угла окружности

    Синус центрального угла окружности

    Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

    🎬 Видео

    Геометрия 8 класс (Урок№26 - Градусная мера дуги окружности. Центральные углы.)Скачать

    Геометрия 8 класс (Урок№26 - Градусная мера дуги окружности. Центральные углы.)
    Поделиться или сохранить к себе: