Синус не равен 0 на окружности

Узнать ещё

Знание — сила. Познавательная информация

Видео:Как найти значения синуса и косинуса, НЕ запоминая!Скачать

Как найти значения синуса и косинуса, НЕ запоминая!

sinx=0

Эта ассоциация позволяет легко запомнить, где синус равен 0, и быстро решить уравнение sin x=0.

Как обычно, частные случаи синуса рассматриваем на единичной окружности.

Используем ассоциацию косинус-колобок. Оба начинаются с ко-, в названии cos x буква o тоже косвенно на колобка указывает. Колобок движется по горизонтали. На координатной плоскости движение по горизонтали происходит вдоль оси x.

Поэтому cos x — это x, соответственно, sin x — это y.

Таким образом, чтобы найти, где синус равен 0, нужно выяснить, в каких точках y=0.

Раз y=0, то движения вверх-вниз не происходит.

На единичной окружности условию sin x=0 удовлетворяют две точки: 0 и π.

Синус не равен 0 на окружности

Чтобы из одной точки попасть в другую, надо пройти половину окружности, то есть π.

Поскольку таких точек, в которых синус равен 0, бесконечное множество, прибавляем не π, а πn, где n — целое число (то есть n принадлежит Z): x=0+πn.

Следовательно, решение уравнения sin x=0, есть множество точек

Видео:Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ

Тригонометрический круг: вся тригонометрия на одном рисунке

Тригонометрический круг — это самый простой способ начать осваивать тригонометрию. Он легко запоминается, и на нём есть всё необходимое.
Тригонометрический круг заменяет десяток таблиц.

  • Синус не равен 0 на окружности

Вот что мы видим на этом рисунке:

  • Перевод градусов в радианы и наоборот. Полный круг содержит градусов, или радиан.
  • Значения синусов и косинусов основных углов. Помним, что значение косинуса угла мы находим на оси , а значение синуса — на оси .
  • И синус, и косинус принимают значения от до .
  • Значение тангенса угла тоже легко найти — поделив на . А чтобы найти котангенс — наоборот, косинус делим на синус.
  • Знаки синуса, косинуса, тангенса и котангенса.
  • Синус — функция нечётная, косинус — чётная.
  • Тригонометрический круг поможет увидеть, что синус и косинус — функции периодические. Период равен .
  • Видео:Тригонометрическая окружность. Как выучить?Скачать

    Тригонометрическая окружность. Как выучить?

    А теперь подробно о тригонометрическом круге:

    Нарисована единичная окружность — то есть окружность с радиусом, равным единице, и с центром в начале системы координат. Той самой системы координат с осями и , в которой мы привыкли рисовать графики функций.

    Мы отсчитываем углы от положительного направления оси против часовой стрелки.

    Полный круг — градусов.
    Точка с координатами соответствует углу ноль градусов. Точка с координатами отвечает углу в , точка с координатами — углу в . Каждому углу от нуля до градусов соответствует точка на единичной окружности.

    Косинусом угла называется абсцисса (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Синусом угла называется ордината (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Всё это легко увидеть на нашем рисунке.

    Итак, косинус и синус — координаты точки на единичной окружности, соответствующей данному углу. Косинус — абсцисса , синус — ордината . Поскольку окружность единичная, для любого угла и синус, и косинус находятся в пределах от до :

    Простым следствием теоремы Пифагора является основное тригонометрическое тождество:

    Для того, чтобы узнать знаки синуса и косинуса какого-либо угла, не нужно рисовать отдельных таблиц. Всё уже нарисовано! Находим на нашей окружности точку, соответствующую данному углу , смотрим, положительны или отрицательны ее координаты по (это косинус угла ) и по (это синус угла ).

    Принято использовать две единицы измерения углов: градусы и радианы. Перевести градусы в радианы просто: градусов, то есть полный круг, соответствует радиан. На нашем рисунке подписаны и градусы, и радианы.

    Если отсчитывать угол от нуля против часовой стрелки — он положительный. Если отсчитывать по часовой стрелке — угол будет отрицательным. Например, угол — это угол величиной в , который отложили от положительного направления оси по часовой стрелке.

    Легко заметить, что

    Углы могут быть и больше градусов. Например, угол — это два полных оборота по часовой стрелке и еще . Поскольку, сделав несколько полных оборотов по окружности, мы возвращаемся в ту же точку с теми же координатами по и по , значения синуса и косинуса повторяются через . То есть:

    где — целое число. То же самое можно записать в радианах:

    Можно на том же рисунке изобразить ещё и оси тангенсов и котангенсов, но проще посчитать их значения. По определению,

    Видео:ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать

    ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, Котангенс

    Основное тригонометрическое тождество

    Синус не равен 0 на окружности

    О чем эта статья:

    9 класс, 10 класс, ЕГЭ/ОГЭ

    Статья находится на проверке у методистов Skysmart.
    Если вы заметили ошибку, сообщите об этом в онлайн-чат
    (в правом нижнем углу экрана).

    Видео:10 класс, 11 урок, Числовая окружностьСкачать

    10 класс, 11 урок, Числовая окружность

    Связь между sin и cos одного угла

    Вы уже наверняка знаете, что тождественный — это равный.

    Основные тригонометрические тождества — это равенства, которые устанавливают связь между синусом, косинусом, тангенсом и котангенсом одного угла. Это значит, что любую из этих функций можно найти, если известна другая функция.

    Ключ к сердцу тригонометрии — основное тригонометрическое тождество. Запомните и полюбите его, чтобы отношения с тригонометрией сложились самым наилучшим образом:

    sin 2 α + cos 2 α = 1

    Из основного тождества вытекают равенства тангенса и котангенса, поэтому оно — ключевое.

    Равенство tg 2 α + 1 = 1/cos 2 α и равенство 1 + сtg 2 α + 1 = 1/sin 2 α выводят из основного тождества, разделив обе части на sin 2 α и cos 2 α.

    В результате деления получаем:

    Синус не равен 0 на окружности

    Поэтому основному тригонометрическому тождеству уделяется максимум внимания. Но какая же «метрия» может обойтись без доказательств. Видите тождество — доказывайте, не раздумывая.

    sin 2 α + cos 2 α = 1

    Сумма квадратов синуса и косинуса одного угла тождественно равна единице.

    Чтобы доказать тождество, обратимся к теме единичной окружности.

    Единичная окружность — это окружность с центром в начале прямоугольной декартовой системы координат. Радиус единичной окружности равен единице.

    Синус не равен 0 на окружности

    Докажем тождество sin 2 α + cos 2 α = 1

    Синус не равен 0 на окружности

      Итак, нам известны координаты точки A (1; 0).

    Произвольный угол α, тогда cos α = x0 = ОB.

  • Если развернуть точку A на угол α, то точка A становится на место точки A1.
  • По определениям:
    • Синус угла (sin α) — это отношение противолежащего катета к гипотенузе.
    • Косинус угла (cos α) — это отношение прилежащего катета к гипотенузе.

    Это значит, что точка A1 получает координаты cos α, sin α.

  • Опускаем перпендикулярную прямую A1B на x0 из точки A1.

    Образовался прямоугольный треугольник OA1B.

    |OB| = |x|.

    Гипотенуза OA1 имеет значение, равное радиусу единичной окружности.

    |OA1| = 1.

    Применяя полученное выражение, записываем равенство по теореме Пифагора, поскольку получившийся угол — прямой:

    |A1B| 2 + |OB| 2 = |OA1| 2 .

    Записываем в виде: |y| 2 + |x| 2 = 1 2 .

    Это значит, что y 2 + x 2 = 1.
    sin угла α = y
    cos угла α = x

    Вставляем данные угла вместо координат точек:

    OB = cos α
    A1B = sin α
    A1O = 1

  • Получаем основное тригонометрическое тождество: sin 2 α + cos 2 α = 1.
    Что и требовалось доказать.
  • Основное тригонометрическое тождество связывает синус угла и косинус угла. Зная одно, вы легко можете найти другое. Нужно лишь извлечь квадратный корень по формулам:

    • sin α = ±Синус не равен 0 на окружности
    • cos α = ±Синус не равен 0 на окружности

    Как видите, перед корнем может стоять и минус, и плюс. Основное тригонометрическое тождество не дает понять, положительным или отрицательным был исходный синус/косинус угла.

    Как правило, в задачках с подобными формулами уже есть условия, которые помогают определиться со знаком. Обычно такое условие — указание на координатную четверть. Таким образом без труда можно определить, какой знак нам требуется.

    Видео:ЗНАЧЕНИЯ СИНУСА И КОСИНУСА НА ОКРУЖНОСТИСкачать

    ЗНАЧЕНИЯ СИНУСА И КОСИНУСА НА ОКРУЖНОСТИ

    Тангенс и котангенс через синус и косинус

    • Синус угла — это ордината y.
    • Косинус угла — это абсцисса x.
    • Тангенс угла — это отношение ординаты к абсциссе.
    • Котангенс угла — это отношение абсциссы к ординате.

    Из всего этого множества красивых, но не сильно понятных слов, можно сделать вывод о зависимости одного от другого. Такая связь помогает отдельно преобразовывать нужные величины.

    • tg α = Синус не равен 0 на окружности
    • ctg α = Синус не равен 0 на окружности

    Исходя из определений:

    • tg α = Синус не равен 0 на окружности= Синус не равен 0 на окружности
    • ctg α = Синус не равен 0 на окружности= Синус не равен 0 на окружности

    Это позволяет сделать вывод, что тригонометрические тождества

    Синус не равен 0 на окружности
    Синус не равен 0 на окружности

    задаются sin и cos углов.

    Отсюда следует, что тангенс угла — это отношение синуса угла к косинусу. А котангенс угла — это отношение косинуса к синусу.

    Отдельно стоит обратить внимание на то, что тригонометрические тождества

    Синус не равен 0 на окружности
    Синус не равен 0 на окружности

    верны для всех углов α, значения которых вписываются в диапазон.

    • Например, выражение Синус не равен 0 на окружностиприменимо для любого угла α, не равного Синус не равен 0 на окружности+ π + z, где z — это любое целое число. В противном случае, в знаменателе будет стоять 0.

    Синус не равен 0 на окружности

    применимо для любого угла α, не равного π * z, где z — это любое целое число.

    Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

    Видео:17 вариант-ЕГЭпрофиль-Реальный-с Оформлением на 100Скачать

    17 вариант-ЕГЭпрофиль-Реальный-с Оформлением на 100

    Связь между тангенсом и котангенсом

    Уж насколько очевидной кажется связь между ранее рассмотренными тождествами, настолько еще более наглядна связь между тангенсом и котангенсом одного угла.

    • Тождество записывается в следующем виде:
      tg α * ctg α = 1.

    Такое тождество применимо и справедливо при любых углах α, значение которых не равняются π/2 * z, где z — это любое целое число. В противном случае, функции не будут определены.

    Как и любое другое, данное тригонометрическое тождество подлежит доказательству. Доказывать его очень просто.

    tg α * ctg α = 1.

    ctg α = x/y

  • Отсюда следует, что tg α * ctg α = y/x * x/y = 1
  • Преобразовываем выражение, подставляем Синус не равен 0 на окружностии Синус не равен 0 на окружности,
    получаем: Синус не равен 0 на окружности
  • Получается, что тангенс и котангенс одного угла, при котором они имеют смысл — это взаимно обратные числа.

    Если числа a и b взаимно обратные — это значит, что число a — это число, обратное числу b, а число b — это число, обратное числу a. Кроме того, это значит, что числу a обратно число b, а числу b обратно число a. Короче, и так, и эдак.

    Видео:Таблица значений тригонометрических функций - как её запомнить!!!Скачать

    Таблица значений тригонометрических функций - как её запомнить!!!

    Тангенс и косинус, котангенс и синус

    Все тождества выше позволяют сделать вывод, что тангенс угла связан с косинусом угла, а котангенс угла — с синусом.

    Эта связь становится очевидна, если взглянуть на тождества:

    • tg 2 α + 1 = Синус не равен 0 на окружности

    Сумма квадрата тангенса угла и единицы равна числу, обратному квадрату косинуса этого угла.

    • 1 + ctg 2 α = Синус не равен 0 на окружности

    Сумма единицы и квадрата котангенса угла равна числу, обратному квадрату синуса этого угла.

    Вывести оба этих тождества можно из основного тригонометрического тождества:
    sin 2 α + cos 2 α = 1.

    1. Для этого нужно поделить обе части тождества на cos 2 α, где косинус не равен нулю.
    2. В результате деления получаем формулу tg 2 α + 1 = Синус не равен 0 на окружности
    3. Если обе части основного тригонометрического тождества sin 2 α + cos 2 α = 1 разделить на sin 2 α, где синус не равен нулю, то получим тождество:
      1 + ctg 2 α = Синус не равен 0 на окружности.
    4. Отсюда можно сделать вывод, что тригонометрическое тождество tg 2 α + 1 = Синус не равен 0 на окружностиприменимо для любого угла α, не равного Синус не равен 0 на окружности+ π + z, где z — это любое целое число.
    5. А тригонометрическое тождество 1 + ctg 2 α = Синус не равен 0 на окружностиприменимо для любого угла, не равного π * z, где z — это любое целое число.

    Хорошо бы выучить все формулы и запомнить формулировки тождеств наизусть. Чтобы это сделать, сохраняйте себе табличку с основными формулами.

    Основные тригонометрические тождества

    sin 2 α + cos 2 α = 1

    Синус не равен 0 на окружности

    Синус не равен 0 на окружности

    tg 2 α + 1 = Синус не равен 0 на окружности

    1 + ctg 2 α = Синус не равен 0 на окружности

    Чтобы тратить еще меньше времени на решение задач, сохраняйте таблицу значений тригонометрических функции углов, которые чаще всего встречаются в задачах.

    Синус не равен 0 на окружности

    Видео:Тригонометрия. Значения синуса и косинуса углов 0°,90°,180°, 270 °, 360° . 10-11 классСкачать

    Тригонометрия. Значения синуса и косинуса углов 0°,90°,180°, 270 °, 360° . 10-11 класс

    Примеры решения задач

    Разберем пару задачек, для решения которых нужно знать основные тождества. Рассмотрите внимательно предложенные решения и потренируйтесь самостоятельно.

    Задачка 1. Найдите cos α, tg α, ctg α при условии, что sin α = 12/13.

      Чтобы решить задачу, необходимы следующие тригонометрические тождества:

    Синус не равен 0 на окружности

    Выражаем cos α из тригонометрической единицы:

    Синус не равен 0 на окружности

    Далее подставляем значения sin α:

    Синус не равен 0 на окружности

    Вычисляем:

    Синус не равен 0 на окружности

    Нам известны значения sin α и cos α, поэтому можно легко найти тангенс, используя формулу:

    Синус не равен 0 на окружности

    Таким же образом, используя формулу, вычисляем значение котангенса:

    Синус не равен 0 на окружности

    Синус не равен 0 на окружности

    Задачка 2. Найдите значение cos α,
    если:
    Синус не равен 0 на окружности

      Чтобы решить задачу, необходимы следующие тригонометрические тождества:

    Синус не равен 0 на окружности

    Выражаем cos α из тригонометрической единицы:

    Синус не равен 0 на окружности

    Далее подставляем значения sin α:

    Синус не равен 0 на окружности

  • Вычисляем:
    Синус не равен 0 на окружности
  • То же самое проделываем со вторым значение sin α

    Подставляем значения sin α:

    Синус не равен 0 на окружности

  • Вычисляем: Синус не равен 0 на окружности
  • Синус не равен 0 на окружности

    Как видите, задачи решаются достаточно просто, нужно лишь верно применять формулы основных тождеств.

    📹 Видео

    Синус, косинус, тангенс и котангенс углов от 0 до 180 градусов.Скачать

    Синус, косинус, тангенс и котангенс углов от 0 до 180 градусов.

    Как видеть тангенс? Тангенс угла с помощью единичного круга.Скачать

    Как видеть тангенс? Тангенс угла с помощью единичного круга.

    ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Синус, Косинус, Тангенс, Котангенс // Подготовка к ЕГЭ по МатематикеСкачать

    ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Синус, Косинус, Тангенс, Котангенс // Подготовка к ЕГЭ по Математике

    10 класс, 13 урок, Синус и косинус Тангенс и котангенсСкачать

    10 класс, 13 урок, Синус и косинус  Тангенс и котангенс

    🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)Скачать

    🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)

    Как запомнить значения синусов и косинусов?! #математика #синус #косинус #геометрия #егэ #shortsСкачать

    Как запомнить значения синусов и косинусов?! #математика #синус #косинус #геометрия #егэ #shorts

    Как просто запомнить, что такое sin, cos, tg?! #косинус #синус #тангенс #математика #огэ #егэСкачать

    Как просто запомнить, что такое sin, cos, tg?! #косинус #синус #тангенс #математика #огэ #егэ

    Тригонометрическая окружность для непонимающихСкачать

    Тригонометрическая окружность для непонимающих

    Формулы приведения - как их легко выучить!Скачать

    Формулы приведения - как их легко выучить!

    Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать

    Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.

    ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

    ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика
    Поделиться или сохранить к себе: