Синус минус одной второй на окружности

Таблица СИНУСОВ для углов от 0° до 360° градусов

СИНУС (SIN α) — это одна из прямых тригонометрических функций для углов, в прямоугольном треугольнике синус острого угла равен отношению противолежащего катета к его единственной гипотенузе.

Малая таблица значений тригонометрических функций (в радианах и градусах)

α (радианы)0π/6π/4π/3π/2π3π/2
α (градусы)30°45°60°90°180°270°360°
SIN α (СИНУС)01/2 2/23 /210-10

Полная таблица синусов для углов от 0° до 360° с шагом всего в 1°

Угол в градусахSin (Синус)
0
0.0175
0.0349
0.0523
0.0698
0.0872
0.1045
0.1219
0.1392
0.1564
10°0.1736
11°0.1908
12°0.2079
13°0.225
14°0.2419
15°0.2588
16°0.2756
17°0.2924
18°0.309
19°0.3256
20°0.342
21°0.3584
22°0.3746
23°0.3907
24°0.4067
25°0.4226
26°0.4384
27°0.454
28°0.4695
29°0.4848
30°0.5
31°0.515
32°0.5299
33°0.5446
34°0.5592
35°0.5736
36°0.5878
37°0.6018
38°0.6157
39°0.6293
40°0.6428
41°0.6561
42°0.6691
43°0.682
44°0.6947
45°0.7071
46°0.7193
47°0.7314
48°0.7431
49°0.7547
50°0.766
51°0.7771
52°0.788
53°0.7986
54°0.809
55°0.8192
56°0.829
57°0.8387
58°0.848
59°0.8572
60°0.866
61°0.8746
62°0.8829
63°0.891
64°0.8988
65°0.9063
66°0.9135
67°0.9205
68°0.9272
69°0.9336
70°0.9397
71°0.9455
72°0.9511
73°0.9563
74°0.9613
75°0.9659
76°0.9703
77°0.9744
78°0.9781
79°0.9816
80°0.9848
81°0.9877
82°0.9903
83°0.9925
84°0.9945
85°0.9962
86°0.9976
87°0.9986
88°0.9994
89°0.9998
90°1

Полная таблица синусов для углов от 91° до 180°

Угол в градусахSin (Синус)
91°0.9998
92°0.9994
93°0.9986
94°0.9976
95°0.9962
96°0.9945
97°0.9925
98°0.9903
99°0.9877
100°0.9848
101°0.9816
102°0.9781
103°0.9744
104°0.9703
105°0.9659
106°0.9613
107°0.9563
108°0.9511
109°0.9455
110°0.9397
111°0.9336
112°0.9272
113°0.9205
114°0.9135
115°0.9063
116°0.8988
117°0.891
118°0.8829
119°0.8746
120°0.866
121°0.8572
122°0.848
123°0.8387
124°0.829
125°0.8192
126°0.809
127°0.7986
128°0.788
129°0.7771
130°0.766
131°0.7547
132°0.7431
133°0.7314
134°0.7193
135°0.7071
136°0.6947
137°0.682
138°0.6691
139°0.6561
140°0.6428
141°0.6293
142°0.6157
143°0.6018
144°0.5878
145°0.5736
146°0.5592
147°0.5446
148°0.5299
149°0.515
150°0.5
151°0.4848
152°0.4695
153°0.454
154°0.4384
155°0.4226
156°0.4067
157°0.3907
158°0.3746
159°0.3584
160°0.342
161°0.3256
162°0.309
163°0.2924
164°0.2756
165°0.2588
166°0.2419
167°0.225
168°0.2079
169°0.1908
170°0.1736
171°0.1564
172°0.1392
173°0.1219
174°0.1045
175°0.0872
176°0.0698
177°0.0523
178°0.0349
179°0.0175
180°0

Таблица синусов для углов 181° — 270°

УголSin (Синус)
181°-0.0175
182°-0.0349
183°-0.0523
184°-0.0698
185°-0.0872
186°-0.1045
187°-0.1219
188°-0.1392
189°-0.1564
190°-0.1736
191°-0.1908
192°-0.2079
193°-0.225
194°-0.2419
195°-0.2588
196°-0.2756
197°-0.2924
198°-0.309
199°-0.3256
200°-0.342
201°-0.3584
202°-0.3746
203°-0.3907
204°-0.4067
205°-0.4226
206°-0.4384
207°-0.454
208°-0.4695
209°-0.4848
210°-0.5
211°-0.515
212°-0.5299
213°-0.5446
214°-0.5592
215°-0.5736
216°-0.5878
217°-0.6018
218°-0.6157
219°-0.6293
220°-0.6428
221°-0.6561
222°-0.6691
223°-0.682
224°-0.6947
225°-0.7071
226°-0.7193
227°-0.7314
228°-0.7431
229°-0.7547
230°-0.766
231°-0.7771
232°-0.788
233°-0.7986
234°-0.809
235°-0.8192
236°-0.829
237°-0.8387
238°-0.848
239°-0.8572
240°-0.866
241°-0.8746
242°-0.8829
243°-0.891
244°-0.8988
245°-0.9063
246°-0.9135
247°-0.9205
248°-0.9272
249°-0.9336
250°-0.9397
251°-0.9455
252°-0.9511
253°-0.9563
254°-0.9613
255°-0.9659
256°-0.9703
257°-0.9744
258°-0.9781
259°-0.9816
260°-0.9848
261°-0.9877
262°-0.9903
263°-0.9925
264°-0.9945
265°-0.9962
266°-0.9976
267°-0.9986
268°-0.9994
269°-0.9998
270°-1

Таблица синусов для углов от 271° до 360°

УголSin (Синус)
271°-0.9998
272°-0.9994
273°-0.9986
274°-0.9976
275°-0.9962
276°-0.9945
277°-0.9925
278°-0.9903
279°-0.9877
280°-0.9848
281°-0.9816
282°-0.9781
283°-0.9744
284°-0.9703
285°-0.9659
286°-0.9613
287°-0.9563
288°-0.9511
289°-0.9455
290°-0.9397
291°-0.9336
292°-0.9272
293°-0.9205
294°-0.9135
295°-0.9063
296°-0.8988
297°-0.891
298°-0.8829
299°-0.8746
300°-0.866
301°-0.8572
302°-0.848
303°-0.8387
304°-0.829
305°-0.8192
306°-0.809
307°-0.7986
308°-0.788
309°-0.7771
310°-0.766
311°-0.7547
312°-0.7431
313°-0.7314
314°-0.7193
315°-0.7071
316°-0.6947
317°-0.682
318°-0.6691
319°-0.6561
320°-0.6428
321°-0.6293
322°-0.6157
323°-0.6018
324°-0.5878
325°-0.5736
326°-0.5592
327°-0.5446
328°-0.5299
329°-0.515
330°-0.5
331°-0.4848
332°-0.4695
333°-0.454
334°-0.4384
335°-0.4226
336°-0.4067
337°-0.3907
338°-0.3746
339°-0.3584
340°-0.342
341°-0.3256
342°-0.309
343°-0.2924
344°-0.2756
345°-0.2588
346°-0.2419
347°-0.225
348°-0.2079
349°-0.1908
350°-0.1736
351°-0.1564
352°-0.1392
353°-0.1219
354°-0.1045
355°-0.0872
356°-0.0698
357°-0.0523
358°-0.0349
359°-0.0175
360°0

Таблица синусов особенно нужна, когда у вас под рукой нет супер навороченного инженерного калькулятора с маленькой спасительной кнопкой с надписью «sin». В таком случае, чтобы узнать, чему же равняется синус определенного заданного угла, просто найдите информацию о интересующем градусе.

Как распечатать таблицу? Левой кнопкой на компьютерной мишке выделите полностью всё таблицу, на выделенном фоне нажмите уже правую кнопку мишки и в появившемся меню перейдете в пункт «Печать».

Как пользоваться таблицей? Всё гораздо проще, чем Вы думаете, ищем в левой вертикальной колонке, соответствующий градус, и напротив него и будет указано нужное значение синуса для данного нужного нам угла.

Чему равен синус 45? …

— А вот собственно и сам ответ на поставленную задачку.sin 45 = 0.7071

Видео:Тригонометрическая окружность. Как выучить?Скачать

Тригонометрическая окружность. Как выучить?

sin(-a),cos(-a),tg(-a),ctg(-a). Минус в аргументе синуса, косинуса

Синус минус одной второй на окружности

И сразу два важных замечания.

Многие ученики думают, что если можно вынести минус из тригонометрической функции, то можно вынести и число, но это не так:

Квадрат меняет ситуацию. Всё дело в том, что (sin^2⁡(-x)=(sin⁡(-x) )^2=(-sin,⁡x )^2=sin^2⁡x), т.е. минус все равно выносится, но так как синуса два и они перемножаются, то в итоге получается плюс.

Видео:ЗНАЧЕНИЯ СИНУСА И КОСИНУСА НА ОКРУЖНОСТИСкачать

ЗНАЧЕНИЯ СИНУСА И КОСИНУСА НА ОКРУЖНОСТИ

Примеры из ЕГЭ

Синус минус одной второй на окружности

Из рисунка видно, что и косинус, и синус положителен. Косинус из трех стандартных значений (frac), (frac<sqrt>), (frac<sqrt>) принимает наименьшее т.е. (cos,⁡frac=frac). Синус из трех стандартных значений будет равен среднему т.е. (sin⁡,frac=frac<sqrt>). Получается:

Если вы не поняли почему (frac) и (frac) находятся на круге там, где мы из обозначили, то читайте статью « Как обозначать числа с пи на числовой окружности? ». А если не поняли, как мы нашли синус и косинус, то читайте статью « Как найти синус и косинус без тригонометрической таблицы ».

Пример (ЕГЭ). Найдите значение выражения (44sqrt,tg,(-480^° )).
Решение. (44sqrt,tg(-480^° )=-44sqrt,tg(480^° )=-44sqrt,tg(360^°+120^° )=-44sqrt,tg(360^°+90^°+30^°)).

Находим (480^°) на окружности:

Синус минус одной второй на окружности

Соединяем точку, соответствующую (480^°) и центр окружности, и продляем до оси тангенсов:

Синус минус одной второй на окружности

Мы попадаем в самое маленькое (из стандартных) значение тангенса.
Значит, (tg(480^° )=-sqrt).
В итоге имеем: (44sqrt tg(-480^° )=-44sqrtcdot(-sqrt)=44cdot 3=132).
Ответ: (132).

Если вам не понятно, как мы нашли значение тангенса, то читайте статью « Как найти тангенс и котангенс без тригонометрической таблицы? ».

Видео:10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Доказательства формул с минусом в аргументе:

Видео:Отбор корней по окружностиСкачать

Отбор корней по окружности

Алгебра

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Видео:Как решать тригонометрические неравенства?Скачать

Как решать тригонометрические неравенства?

Синус и косинус угла на единичной окружности

Впервые мы познакомились с синусом, косинусом и другими тригонометрическими функциями ещё в 8 класс на уроках геометрии, при изучении прямоугольного треугольника. Пусть есть некоторый треуг-ник АВС, у которого∠ С – прямой, а ∠ВАС принимается за α. Тогда sinα – это отношение ВС к АВ, а cosα– это отношение АС к АВ. В свою очередь tgα– это отношение ВС к АС:

С помощью тригонометрических функций удобно было находить стороны прямоугольного треугол-ка. Например, пусть известно, что гипотенуза АВ равна 5, а sinα = 0,8. Тогда из формулы sinα = ВС/АВ легко получить, что

ВС = АВ•sinα = 5•0,8 = 4

Если известно, что cosα = 0,6, то мы сможем найти и второй катет:

АС = АВ•cosα = 5•0,6 = 3

Отдельно заметим, что тангенс угла может быть рассчитан не как отношение двух катетов, а как отношение синуса к косинусу:

tgα = ВС/ АС = (АВ•sinα)/(АВ•cosα) = (sinα)/(cosα)

Отметим на единичной окружности произвольную точку А, которой соответствует некоторый угол α. У этой точки есть свои координаты хА и уА:

Попытаемся определить, чему равны координаты точки А. Для этого обозначим буквой B точку, в которой перпендикуляр, опущенный из А, пересекает горизонтальную ось Ох, и рассмотрим треугольник ОАВ:

Ясно, что ОАВ – это прямоугольный треугольник, ведь∠ АОВ = 90°. Значит, отрезок АВ можно рассчитать по формуле

Но ОА – это радиус единичной окружности. Это значит, что ОА = 1. Тогда

АВ = sinα•ОА = sinα•1 = sinα

С другой стороны, видно, что величина отрезка АВ равна координате уА. Получается, что уА = АВ = sinα, или

Отрезок ОВ также можно найти из прямоугольного треугольника АОВ, используя косинус:

Учитывая, что ОА = 1, а длина ОВ равна координате хА, мы получим следующее:

хА = ОВ = cosα•ОА = cosα•1 = cosα

то есть координата хА равна cos α:

Итак, мы выяснили, что координаты точки, лежащей на единичной окружности, равны синусу и косинусу угла, соответствующего этой точке.

Таким образом, нам удалось дать новое определение синусу и косинусу угла:

Заметим, что в прямоугольном треугольнике углы, помимо самого прямого угла, могут быть только острыми. Поэтому предыдущее определение синуса и косинуса, данное в 8 классе в курсе геометрии, было пригодно лишь для углов из диапазона 0 1 I и II четверть

🎥 Видео

Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функции

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Уравнение sinx=aСкачать

Уравнение sinx=a

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, Котангенс

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.

Арксинус. Решение уравнения sin t = a | Алгебра 10 класс #27 | ИнфоурокСкачать

Арксинус. Решение уравнения sin t = a | Алгебра 10 класс #27 | Инфоурок

10 класс, 22 урок, Простейшие тригонометрические уравнения неравенстваСкачать

10 класс, 22 урок, Простейшие тригонометрические уравнения неравенства

Как просто запомнить, что такое sin, cos, tg?! #косинус #синус #тангенс #математика #огэ #егэСкачать

Как просто запомнить, что такое sin, cos, tg?! #косинус #синус #тангенс #математика #огэ #егэ

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor online

Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать

Математика| Преобразование тригонометрических выражений. Формулы и задачи

Уравнение sin x равно 1 2Скачать

Уравнение sin x равно   1   2

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

Алгебра 10 класс (Урок№42 - Уравнение sin x = a.)Скачать

Алгебра 10 класс (Урок№42 - Уравнение sin x = a.)

10 класс. Решение уравнений sin x = aСкачать

10 класс. Решение уравнений sin x = a
Поделиться или сохранить к себе: