Сформулируйте свойство параллельных прямых по односторонним углам

Признаки и свойства параллельных прямых

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Признаки параллельных прямых

1. Если две прямые параллельны третьей прямой, то они являются параллельными:

Сформулируйте свойство параллельных прямых по односторонним углам

2. Если две прямые перпендикулярны третьей прямой, то они параллельны:

Сформулируйте свойство параллельных прямых по односторонним углам

Остальные признаки параллельности прямых основаны на углах, образующихся при пересечении двух прямых третьей.

3. Если сумма внутренних односторонних углов равна 180°, то прямые параллельны:

Сформулируйте свойство параллельных прямых по односторонним углам

Если ∠1 + ∠2 = 180°, то a || b.

4. Если соответственные углы равны, то прямые параллельны:

Сформулируйте свойство параллельных прямых по односторонним углам

5. Если внутренние накрест лежащие углы равны, то прямые параллельны:

Сформулируйте свойство параллельных прямых по односторонним углам

Видео:7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущейСкачать

7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущей

Свойства параллельных прямых

Утверждения, обратные признакам параллельности прямых, являются их свойствами. Они основаны на свойствах углов, образованных пересечением двух параллельных прямых третьей прямой.

1. При пересечении двух параллельных прямых третьей прямой, сумма образованных ими внутренних односторонних углов равна 180°:

Сформулируйте свойство параллельных прямых по односторонним углам

Если a || b, то ∠1 + ∠2 = 180°.

2. При пересечении двух параллельных прямых третьей прямой, образованные ими соответственные углы равны:

Сформулируйте свойство параллельных прямых по односторонним углам

3. При пересечении двух параллельных прямых третьей прямой, образованные ими накрест лежащие углы равны:

Сформулируйте свойство параллельных прямых по односторонним углам

Следующее свойство является частным случаем для каждого предыдущего:

4. Если прямая на плоскости перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой:

Сформулируйте свойство параллельных прямых по односторонним углам

Пятое свойство — это аксиома параллельности прямых:

5. Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной прямой:

Видео:Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)Скачать

Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)

Свойства параллельных прямых

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Сформулируйте свойство параллельных прямых по односторонним углам

С помощью данного видеоурока вы сможете самостоятельно изучить тему «Свойства параллельных прямых». В ходе него вам предстоит параллельные прямые, рассмотреть их свойства, а также сформулировать одну из самых важных аксиом геометрии.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Основы геометрии»

Видео:Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать

Геометрия 7 класс (Урок№18 - Параллельные прямые.)

Параллельность прямых

Сформулируйте свойство параллельных прямых по односторонним углам

О чем эта статья:

10 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:МЕРЗЛЯК 7 ГЕОМЕТРИЯ. СВОЙСТВА ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ. ПАРАГРАФ-15Скачать

МЕРЗЛЯК 7 ГЕОМЕТРИЯ. СВОЙСТВА ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ. ПАРАГРАФ-15

Определение параллельности прямых

Начнем с главного — определимся, какие прямые параллельны согласно евклидовой геометрии. Мы недаром упомянули Евклида, ведь именно в его трудах, написанных за 300 лет до н. э., до нас дошли первые упоминания о параллельности.

Параллельными называются прямые в одной плоскости, не имеющие точек пересечения, даже если их продолжать бесконечно долго. Обозначаются они следующим образом: a II b.

Казалось бы, здесь все просто, но со времен Евклида над определением параллельных прямых и признаками параллельности прямых бились лучшие умы. Особый интерес вызывал 5-й постулат древнегреческого математика: через точку, которая не относится к прямой, в той же плоскости можно провести только одну прямую, параллельную первой. В XIX веке российский математик Н. Лобачевский смог опровергнуть постулат и указать на условия, при которых возможно провести как минимум 2 параллельные прямые через одну точку.

Впрочем, поскольку школьная программа ограничена евклидовой геометрией, вышеуказанное утверждение мы принимаем как аксиому.

На плоскости через любую точку, не принадлежащую некой прямой, можно провести единственную прямую, которая была бы ей параллельна.

Курсы по математике в онлайн-школе Skysmart помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

Видео:Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)

Свойства и признаки параллельных прямых

Есть ряд признаков, по которым можно определить, что одна прямая параллельна другой. К счастью, свойства и признаки параллельности прямых тесно связаны, поэтому не придется запоминать много информации.

Начнем со свойств. Для этого проведем третью прямую, пересекающую параллельные прямые — она будет называться секущей. В результате у нас образуется 8 углов.

Если секущая проходит через две параллельные прямые, то:

    два внутренних односторонних угла образуют в сумме 180°:

∠4 + ∠6 = 180°; ∠3 + ∠5 = 180°.

Сформулируйте свойство параллельных прямых по односторонним углам
два внутренних накрест лежащих угла равны между собой:

Сформулируйте свойство параллельных прямых по односторонним углам
два соответственных угла равны между собой:

∠1 = ∠5, ∠3 = ∠7, ∠4 = ∠8, ∠2 = ∠6.

Сформулируйте свойство параллельных прямых по односторонним углам

Если секущая образует перпендикуляр с одной из параллельных прямых, то она будет перпендикулярна и другой.

Сформулируйте свойство параллельных прямых по односторонним углам

Вышеуказанные свойства являются одновременно признаками, по которым мы можем сделать вывод о параллельности прямых. Причем достаточно установить и доказать лишь один признак — остальные будут к нему прилагаться.

А сейчас посмотрим, как все это помогает решать задачи и практиковаться в определении параллельности двух прямых.

Задача 1

Прямые MN и KP пересекают две другие прямые, образуя несколько углов. Известно, что ∠1 = 73°; ∠3 = 92°; ∠2 = 73°. Требуется найти величину ∠4.

Решение

Поскольку ∠1 и ∠2 являются соответственными, их равенство говорит о том, что MN II KP. Следовательно, ∠3 = ∠MPK = 92°.

Согласно другому свойству параллельных прямых ∠4 + ∠MPK = 180°.

Сформулируйте свойство параллельных прямых по односторонним углам

Задача 2

Две параллельные прямые а и b удалены друг от друга на расстояние 27 см. Секущая к этим прямым образует с одной из них угол в 150°. Требуется найти величину отрезка секущей, расположенного между а и b.

Решение

Поскольку а II b, значит ∠MKD + ∠KDN = 180°.

Соответственно, ∠MKD = 180° — ∠KDN = 180° — 150° = 30°.

Теперь рассмотрим треугольник KDM. Мы знаем, что отрезок DM представляет собой расстояние между прямыми а и b, а значит, DM ┴ b и наш треугольник является прямоугольным.

Поскольку катет, противолежащий углу в 30°, равен ½ гипотенузы, DM = 1/2DK.

📹 Видео

ГЕОМЕТРИЯ 7 класс : Соответственные, односторонние и накрест лежащие углыСкачать

ГЕОМЕТРИЯ 7 класс : Соответственные, односторонние и накрест лежащие углы

7 класс, 30 урок, Углы с соответственно параллельными или перпендикулярными сторонамиСкачать

7 класс, 30 урок, Углы с соответственно параллельными или перпендикулярными сторонами

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

Параллельные прямые — Признак Параллельности Прямых и Свойства УгловСкачать

Параллельные прямые — Признак Параллельности Прямых и Свойства Углов

7 класс, 25 урок, Признаки параллельности двух прямыхСкачать

7 класс, 25 урок, Признаки параллельности двух прямых

УГЛЫ ПРИ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ И СЕКУЩЕЙСкачать

УГЛЫ ПРИ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ И СЕКУЩЕЙ

СВОЙСТВА ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ. §15 геометрия 7 классСкачать

СВОЙСТВА ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ. §15 геометрия 7 класс

Свойства параллельных прямых - 7 класс геометрияСкачать

Свойства параллельных прямых - 7 класс геометрия

Теорема 14.1 Если накрест лежащие углы равны, то прямые параллельныСкачать

Теорема 14.1 Если накрест лежащие углы равны, то прямые параллельны

ГЕОМЕТРИЯ 7 класс. Признаки параллельности, накрест лежащие, соответственные и односторонние углыСкачать

ГЕОМЕТРИЯ 7 класс. Признаки параллельности, накрест лежащие, соответственные и односторонние углы

7 класс, 31 урок, Теорема о сумме углов треугольникаСкачать

7 класс, 31 урок, Теорема о сумме углов треугольника

7 класс, 28 урок, Аксиома параллельных прямыхСкачать

7 класс, 28 урок, Аксиома параллельных прямых

Параллельные прямые .накрест лежащие соответственные и односторонние углы ГеометрияСкачать

Параллельные прямые .накрест лежащие соответственные и односторонние углы Геометрия
Поделиться или сохранить к себе: