Серединный перпендикуляр пересекаются в центре его описанной окружности

Серединный перпендикуляр пересекаются в центре его описанной окружности

Серединный перпендикуляр пересекаются в центре его описанной окружности

Видео:Серединный перпендикуляр. 7 класс геометрия. Центр описанной окружности треугольникаСкачать

Серединный перпендикуляр. 7 класс геометрия. Центр описанной окружности треугольника

Источник задания: Решение 3955. ОГЭ 2018 Математика, И.В. Ященко. 36 вариантов.

Задание 20. Какое из следующих утверждений верно?

1) У любой трапеции боковые стороны равны.

2) Серединные перпендикуляры к сторонам треугольника пересекаются в точке, являющейся центром окружности, описанной около треугольника.

3) Если две стороны и угол одного треугольника равны соответственно двум сторонам и углу другого треугольника, то такие треугольники равны.

В ответе запишите номер выбранного утверждения.

1) Не верно. Боковые стороны у трапеции могут отличаться друг от друга.

2) Верно. Точка пересечения серединных перпендикуляров соответствует центру описанной вокруг треугольника окружности.

3) Не верно. Треугольники будут подобны, но не всегда равны в этом случае.

Видео:Серединные перпендикуляры к сторонам треугольника ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Серединные перпендикуляры к сторонам треугольника ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Серединный перпендикуляр пересекаются в центре его описанной окружности

Какие из следующих утверждений верны?

1) Треугольника со сторонами 1, 2, 4 не существует.

2) Сумма углов любого треугольника равна 360 градусам.

3) Серединные перпендикуляры к сторонам треугольника пересекаются в центре его описанной окружности.

Если утверждений несколько, запишите их номера в порядке возрастания.

Проверим каждое из утверждений.

1) «Треугольника со сторонами 1, 2, 4 не существует» — верно, сторона треугольника не может быть больше суммы двух других.

2) «Сумма углов любого треугольника равна 360 градусам» — неверно, сумма углов любого треугольника равна 180 градусам.

3) «Серединные перпендикуляры к сторонам треугольника пересекаются в центре его описанной окружности» — верно, центр описанной окружности лежит в точке пересечения серединных перпендикуляров.

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов

Серединный перпендикуляр пересекаются в центре его описанной окружностиСерединный перпендикуляр к отрезку
Серединный перпендикуляр пересекаются в центре его описанной окружностиОкружность описанная около треугольника
Серединный перпендикуляр пересекаются в центре его описанной окружностиСвойства описанной около треугольника окружности. Теорема синусов
Серединный перпендикуляр пересекаются в центре его описанной окружностиДоказательства теорем о свойствах описанной около треугольника окружности

Серединный перпендикуляр пересекаются в центре его описанной окружности

Видео:8 класс, 36 урок, Свойства серединного перпендикуляра к отрезкуСкачать

8 класс, 36 урок, Свойства серединного перпендикуляра к отрезку

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Серединный перпендикуляр пересекаются в центре его описанной окружности

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Серединный перпендикуляр пересекаются в центре его описанной окружности

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Серединный перпендикуляр пересекаются в центре его описанной окружности

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Серединный перпендикуляр пересекаются в центре его описанной окружности

Серединный перпендикуляр пересекаются в центре его описанной окружности

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Серединный перпендикуляр пересекаются в центре его описанной окружности

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Серединный перпендикуляр пересекаются в центре его описанной окружности

Серединный перпендикуляр пересекаются в центре его описанной окружности

Полученное противоречие и завершает доказательство теоремы 2

Видео:Серединный перпендикулярСкачать

Серединный перпендикуляр

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Серединный перпендикуляр пересекаются в центре его описанной окружности

Видео:Геометрия 8 класс (Урок№30 - Свойство серединного перпендикуляра.)Скачать

Геометрия 8 класс (Урок№30 - Свойство серединного перпендикуляра.)

Свойства описанной около треугольника окружности. Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

Серединный перпендикуляр пересекаются в центре его описанной окружности,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

Серединный перпендикуляр пересекаются в центре его описанной окружности

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

ФигураРисунокСвойство
Серединные перпендикуляры
к сторонам треугольника
Серединный перпендикуляр пересекаются в центре его описанной окружностиВсе серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольникаСерединный перпендикуляр пересекаются в центре его описанной окружностиОколо любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружностиСерединный перпендикуляр пересекаются в центре его описанной окружностиЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружностиСерединный перпендикуляр пересекаются в центре его описанной окружностиЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусовСерединный перпендикуляр пересекаются в центре его описанной окружности
Площадь треугольникаСерединный перпендикуляр пересекаются в центре его описанной окружности
Радиус описанной окружностиСерединный перпендикуляр пересекаются в центре его описанной окружности
Серединные перпендикуляры к сторонам треугольника
Серединный перпендикуляр пересекаются в центре его описанной окружности

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольникаСерединный перпендикуляр пересекаются в центре его описанной окружности

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружностиСерединный перпендикуляр пересекаются в центре его описанной окружности

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружностиСерединный перпендикуляр пересекаются в центре его описанной окружности

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружностиСерединный перпендикуляр пересекаются в центре его описанной окружности

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусовСерединный перпендикуляр пересекаются в центре его описанной окружности

Для любого треугольника справедливы равенства (теорема синусов):

Серединный перпендикуляр пересекаются в центре его описанной окружности,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольникаСерединный перпендикуляр пересекаются в центре его описанной окружности

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружностиСерединный перпендикуляр пересекаются в центре его описанной окружности

Для любого треугольника справедливо равенство:

Серединный перпендикуляр пересекаются в центре его описанной окружности

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Видео:Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||Скачать

Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Серединный перпендикуляр пересекаются в центре его описанной окружности

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

Серединный перпендикуляр пересекаются в центре его описанной окружности

Серединный перпендикуляр пересекаются в центре его описанной окружности.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

l = 2Rsin φ .(1)

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Серединный перпендикуляр пересекаются в центре его описанной окружности

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

🎥 Видео

Геометрия. 8 класс. Урок 10 "Серединный перпендикуляр как ГМТ. Описанная окружность"Скачать

Геометрия. 8 класс.  Урок 10 "Серединный перпендикуляр как ГМТ. Описанная окружность"

Построить описанную окружность (Задача 1)Скачать

Построить описанную окружность (Задача 1)

Центральная симметрия. 6 класс.Скачать

Центральная симметрия. 6 класс.

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Урок 12. Серединный перпендикуляр к отрезку (7 класс)Скачать

Урок 12.  Серединный перпендикуляр к отрезку (7 класс)

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

РЕШЕНИЕ ЗАДАЧИ ПО ТЕМЕ «СЕРЕДИННЫЙ ПЕРПЕНДИКУЛЯР». Задачи | ГЕОМЕТРИЯ 7 классСкачать

РЕШЕНИЕ ЗАДАЧИ ПО ТЕМЕ «СЕРЕДИННЫЙ ПЕРПЕНДИКУЛЯР». Задачи | ГЕОМЕТРИЯ 7 класс

75. Свойства серединного перпендикуляра к отрезкуСкачать

75. Свойства серединного перпендикуляра к отрезку

Серединный перпендикуляр к стороне треугольника. Построение.Скачать

Серединный перпендикуляр к стороне треугольника. Построение.

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Серединный перпендикуляр треугольника. Построение. 2 частьСкачать

Серединный перпендикуляр треугольника. Построение. 2 часть

Геометрия 8 класс Урок 10 Серединный перпендикуляр как ГМТ Описанная окружностьСкачать

Геометрия 8 класс  Урок 10 Серединный перпендикуляр как ГМТ Описанная окружность
Поделиться или сохранить к себе: