Секущая в геометрии это при параллельных прямых

Углы при пересечении двух прямых

Если какие-нибудь две прямые пересечены третьей прямой, то пересекающая их прямая называется секущей по отношению к прямым, которые она пересекает.

При пересечении двух прямых третьей, образуется два вида углов: внешние и внутренние.

Секущая в геометрии это при параллельных прямых

На рисунке изображены две прямые a и b, пересекаемые прямой c. Прямая c по отношению к прямым a и b является секущей. Синим цветом на рисунке обозначены внешние углы (∠1, ∠2, ∠7 и ∠8), а красным — внутренние углы (∠3, ∠4, ∠5 и ∠6).

Также при пересечении двух прямых третьей, образовавшиеся углы получают попарно следующие названия:

Соответственные углы: ∠1 и ∠5, ∠3 и ∠7, ∠2 и ∠6, ∠4 и ∠8.Секущая в геометрии это при параллельных прямых
Внутренние накрест лежащие углы: ∠3 и ∠6, ∠4 и ∠5.Секущая в геометрии это при параллельных прямых
Внешние накрест лежащие углы: ∠1 и ∠8, ∠2 и ∠7.Секущая в геометрии это при параллельных прямых
Внутренние односторонние углы: ∠3 и ∠5, ∠4 и ∠6.Секущая в геометрии это при параллельных прямых
Внешние односторонние углы: ∠1 и ∠7, ∠2 и ∠8.Секущая в геометрии это при параллельных прямых

Видео:УГЛЫ ПРИ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ И СЕКУЩЕЙСкачать

УГЛЫ ПРИ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ И СЕКУЩЕЙ

Углы при пересечении параллельных прямых

Если секущая пересекает две параллельные прямые линии, то:

  • внутренние накрест лежащие углы равны;
  • сумма внутренних односторонних углов равна 180°;
  • соответственные углы равны;
  • внешние накрест лежащие углы равны;
  • сумма внешних односторонних углов равна 180°.

Видео:Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)

Углы при параллельных прямых и секущей. Вертикальные, смежные, односторонние, соответственные, накрест лежащие углы

Пусть прямая с пересекает параллельные прямые и . При этом образуется восемь углов. Углы при параллельных прямых и секущей так часто используются в задачах, что в геометрии им даны специальные названия.

Секущая в геометрии это при параллельных прямых

Углы и — вертикальные. Очевидно, вертикальные углы равны, то есть

Конечно, углы и , и — тоже вертикальные.

Углы и — смежные, это мы уже знаем. Сумма смежных углов равна .

Углы и (а также и , и , и ) — накрест лежащие. Накрест лежащие углы равны.

Углы и — односторонние. Они лежат по одну сторону от всей «конструкции». Углы и — тоже односторонние. Сумма односторонних углов равна , то есть

Углы и (а также и , и , и ) называются соответственными.

Соответственные углы равны, то есть

Углы и (а также и , и , и ) называют накрест лежащими.

Накрест лежащие углы равны, то есть

Чтобы применять все эти факты в решении задач ЕГЭ, надо научиться видеть их на чертеже. Например, глядя на параллелограмм или трапецию, можно увидеть пару параллельных прямых и секущую, а также односторонние углы. Проведя диагональ параллелограмма, видим накрест лежащие углы. Это — один из шагов, из которых и состоит решение.

Ты нашел то, что искал? Поделись с друзьями!

1. Биссектриса тупого угла параллелограмма делит противоположную сторону в отношении , считая от вершины тупого угла. Найдите большую сторону параллелограмма, если его периметр равен .

Секущая в геометрии это при параллельных прямых Напомним, что биссектриса угла — это луч, выходящий из вершины угла и делящий угол пополам.

Пусть — биссектриса тупого угла . По условию, отрезки и равны и соответственно.

Рассмотрим углы и . Поскольку и параллельны, — секущая, углы и являются накрест лежащими. Мы знаем, что накрест лежащие углы равны. Значит, треугольник — равнобедренный, следовательно, .

Периметр параллелограмма — это сумма всех его сторон, то есть

2. Диагональ параллелограмма образует с двумя его сторонами углы и . Найдите больший угол параллелограмма. Ответ дайте в градусах.

Нарисуйте параллелограмм и его диагональ. Заметив на чертеже накрест лежащие углы и односторонние углы, вы легко получите ответ: .

3. Чему равен больший угол равнобедренной трапеции, если известно, что разность противолежащих углов равна ? Ответ дайте в градусах.

Секущая в геометрии это при параллельных прямых Мы знаем, что равнобедренной (или равнобокой) называется трапеция, у которой боковые стороны равны. Следовательно, равны углы при верхнем основании, а также углы при нижнем основании.

Давайте посмотрим на чертеж. По условию, , то есть .

Углы и — односторонние при параллельных прямых и секущей, следовательно,

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Геометрия. 7 класс

Конспект урока

Свойства параллельных прямых

Перечень рассматриваемых вопросов:

  • Углы, образованные при пересечении двух прямых секущей.
  • Доказательство свойств параллельных прямых и их применение при решении задач.
  • Формулирование теоремы об углах с соответственно параллельными сторонами.

Две прямые на плоскости называются параллельными, если они не пересекаются.

Утверждение, обратное данной теореме– это утверждение, в котором условие является заключением теоремы, а заключение – условием теоремы.

  1. Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.
  1. Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
  2. Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
  3. Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
  4. Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
  5. Иченская М. А. Геометрия: Самостоятельные и контрольные работы 7–9классы. // Иченская М. А. – М.: Просвещение, 2019. – 144 с.

Теоретический материал для самостоятельного изучения.

Ранее мы узнали и научились применять признаки параллельности прямых.

Рассмотрим утверждения, обратные к теоремам, выражающим признаки параллельности двух прямых.

В любой теореме есть две части: условие (это то, что дано)и заключение (это то, что требуется доказать).

Утверждением, обратным данному, называется утверждение, в котором условием является заключение, а заключением – условие.

Итак, вспомним один из признаков параллельности прямых. Если при пересечении двух прямых секущей накрест лежащие углы, образованные этими прямыми и секущей, равны (это условие), то прямые параллельны (заключение).

Секущая в геометрии это при параллельных прямых

Сформулируем и докажем обратное утверждение.

Если две параллельные прямые пересечены секущей, то накрест лежащие углы,образованные этими прямыми и секущей,равны.

∠1 и ∠2 – накрест лежащие.

Доказательство:( метод от противного):

Секущая в геометрии это при параллельных прямых

Отложим ∠PMN =∠2 (накрест лежащие) → МР║b→ через точку М проходит 2 параллельные прямые прямой b (МР║b– доказательство;a║b– условие).→∠1=∠2.

Это противоречит теореме о единственности прямой параллельной данной и проходящей через точку.

Если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой.

Секущая в геометрии это при параллельных прямых

С пересекает а, значит, и пересекает параллельную ей прямую b(по следствию из аксиомы параллельных прямых).→ с – секущая к прямым а и b→∠1 = ∠2 = 90° (по только что доказанному свойству параллельных прямых).→ с ┴ b.

Что и требовалось доказать.

Вспомним ещё один признак параллельности двух прямых. Если при пересечении двух прямых секущей соответственные углы равны(это условие), то прямые параллельны(заключение).

Секущая в геометрии это при параллельных прямых

Сформулируем и докажем обратное утверждение

Если две параллельные прямые пересечены секущей, то соответственные углы, образованные этими прямыми и секущей, равны.

Секущая в геометрии это при параллельных прямых

Дано:

Доказать:

По условию a║b→∠1 = ∠3 (накрест лежащие углы). → ∠2 = ∠3 (вертикальные углы).

Значит, ∠1 = ∠2, что и требовалось доказать.

Вспомним ещё один признак параллельности двух прямых. Если при пересечении двух прямых секущей сумма односторонних углов, образованных этими прямыми и секущей, равна 180° (условие), то прямые параллельны (заключение).

Секущая в геометрии это при параллельных прямых

Сформулируем и докажем обратное утверждение.

Если две параллельные прямые пересечены секущей, то сумма односторонних углов, образованных этими прямыми и секущей, равна 180°.

Секущая в геометрии это при параллельных прямых

Дано:a║b,

Доказать:

По условию a║b→∠1=∠2 ‑соответственные углы, (в силу предыдущей теоремы).

∠2+∠4=180° (по свойству смежных углов).

→ ∠1+∠4= 180°,что и требовалось доказать.

Материал для углубленного изучения темы.

Задача на доказательство.

Прямая m пересекает параллельные прямые а и b в точках А и В. Прямая р, проходящая через середину отрезка АВ, точку О, пересекает прямые а и b в точках С и D.

Докажем, что ОС=ОD.

По условию дано: а ║b, рՈа= А, рՈb = В, mՈа = D, mՈb = C.

Доказать: ОС = ОD.

Доказательство: рассмотрим, образовавшиеся при построении, треугольники AOD и BOC. Они равны по 2 признаку равенства треугольников, т.к. АО=ВО (О– середина отрезка АВ по условию); ∠1=∠2(накрест лежащие углы); ∠3=∠4 (вертикальные углы). →Все элементы равных треугольников соответственно равны → ОС=ОD. Что и требовалось доказать.

Секущая в геометрии это при параллельных прямых

Разбор заданий тренировочного модуля.

1. Три прямых а,р,с пересечены прямой k, при этом образуются соответственные углы: ∠1= 30°,∠2 = 40°,∠3= 30°,как показано на рисунке. Какие из прямых параллельны?

Секущая в геометрии это при параллельных прямых

На рисунке изображены прямые а, р, с, которые пересечены секущей k. При этом углы 1,2,3 соответственные. По условию: ∠3= ∠1= 30°,∠2 ≠ ∠1,∠2 ≠ ∠3.

Следовательно, прямые а и р параллельные, прямые а и с, р и с не параллельные(по свойствам параллельных прямых).

2. На рисунке прямые аb, при этомMO и ЕО – биссектрисы углов М и Е соответственно, пересекаются в точке О. Чему равна градусная мера угла МОЕ, если сумма углов в треугольнике равна 180°?

Секущая в геометрии это при параллельных прямых

По условию аb→∠М+∠Е=180° (по теореме о параллельных прямых об односторонних углах). Т.к. MO и ЕО – биссектрисы углов М и Е →∠М = 2∠ОМЕ,

∠М+∠Е =2∠ОМЕ +2∠МЕО =180°.

По условию сумма углов в треугольнике равна 180° → в ∆МОЕ.

🔍 Видео

Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать

Геометрия 7 класс (Урок№18 - Параллельные прямые.)

7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущейСкачать

7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущей

Пары углов в геометрииСкачать

Пары углов в геометрии

№201. Сумма накрест лежащих углов при пересечении двух параллельных прямых секущей равна 210Скачать

№201. Сумма накрест лежащих углов при пересечении двух параллельных прямых секущей равна 210

Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)Скачать

Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)

Параллельные прямые (задачи).Скачать

Параллельные прямые (задачи).

СЕЧЕНИЯ. СТРАШНЫЙ УРОК | Математика | TutorOnlineСкачать

СЕЧЕНИЯ. СТРАШНЫЙ УРОК | Математика | TutorOnline

7 класс, 25 урок, Признаки параллельности двух прямыхСкачать

7 класс, 25 урок, Признаки параллельности двух прямых

№203. Найдите все углы, образованные при пересечении двух параллельных прямых а и b секущей сСкачать

№203. Найдите все углы, образованные при пересечении двух параллельных прямых а и b секущей с

ГЕОМЕТРИЯ 7 класс : Соответственные, односторонние и накрест лежащие углыСкачать

ГЕОМЕТРИЯ 7 класс : Соответственные, односторонние и накрест лежащие углы

Углы, образованные при пересечении двух прямых секущейСкачать

Углы, образованные при пересечении двух прямых секущей

Углы при параллельных прямых и секущей | Математика ЕГЭ 2024 #егэпрофиль #егэ #профиль #умскулСкачать

Углы при параллельных прямых и секущей | Математика ЕГЭ 2024 #егэпрофиль #егэ #профиль #умскул

Это пора запомнить! Свойства углов при параллельных прямых и секущей. #геометрияСкачать

Это пора запомнить! Свойства углов при параллельных прямых и секущей. #геометрия

№211. Две параллельные прямые пересечены секущей. Докажите, что: а) биссектрисыСкачать

№211. Две параллельные прямые пересечены секущей. Докажите, что: а) биссектрисы

№208. Разность двух односторонних углов при пересечении двух параллельных прямых секущей равна 50°Скачать

№208. Разность двух односторонних углов при пересечении двух параллельных прямых секущей равна 50°

10 класс, 14 урок, Задачи на построение сеченийСкачать

10 класс, 14 урок, Задачи на построение сечений

Углы, образованные параллельными прямыми и секущейСкачать

Углы, образованные параллельными прямыми и секущей
Поделиться или сохранить к себе: