Содержание:
Рассмотрим вопрос о взаимном расположении прямой и окружности. Ранее уже отмечалось, что возможны три случая взаимного расположения прямой и окружности:
- прямая имеет только две общие точки с окружностью;
- прямая имеет только одну общую точку с окружностью;
- прямая не имеет общих точек с окружностью.
Если прямая имеет две общие точки с окружностью, то она называется секущей.
- Понятие о вписанных и описанных многоугольниках
- Касательная к окружности
- Пример №1
- Пример №2
- Пример №3
- Взаимное расположение двух окружностей
- Пример №4
- Пример №5
- Пример №6
- Пример №7
- Центральные и вписанные углы
- Вписанные углы. Рассмотрим понятие вписанного угла
- Свойство пересекающихся хорд. Теорема о касательной и секущей
- Урок геометрии по теме «Правильные многоугольники. Решение задач». 9-й класс
- 🔥 Видео
Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Понятие о вписанных и описанных многоугольниках
Взаимное расположение окружности со (О, R) с центром в точке О радиуса R и прямой I характеризуется соотношением между расстоянием d(0, I) от центра О окружности до прямой I и радиусом R окружности. Докажем это.
1) Прямая I имеет только две общие точки с окружностью, если расстояние от центра окружности до прямой I меньше радиуса окружности, т. е. 
Пусть прямая I не проходит через центр О окружности и расстояние 

так, что 
Действительно, так как по теореме Пифагора
Таким образом, точки А и В — общие точки прямой и окружности. Докажем, что других общих точек прямая I и окружность 
Предположим, что существует еще одна точка X — общая для окружности и прямой. Тогда центр окружности О равноудален от точек А, В, и X, а значит, он лежит на серединных перпендикулярах 


Если прямая I проходит через центр О окружности, т. е. d(0, Z) = 0, то она пересекает окружность в двух точках, которые являются концами диаметра, лежащего на этой прямой.
2) Прямая I имеет только одну общую точку с окружностью, если расстояние от центра окружности до прямой I равно радиусу окружности, т. е. если d(0, I) = R.
Пусть расстояние от центра окружности до прямой I равно радиусу окружности, а точка F — основание перпендикуляра, проведенного из центра окружности к прямой I (рис. 2). Тогда OF = R, а значит, точка F лежит на окружности. Других общих точек прямая и окружность не имеют. Действительно, для любой точки X прямой I, не совпадающей с точкой F, выполняется условие ОХ > OF, OF = R, так; как наклонная ОХ больше перпендикуляра OF.
Следовательно, точка X не лежит на окружности.
3) Прямая I не имеет общих точек с окружностью, если расстояние от центра О окружности до прямой I больше радиуса окружности, т. е. если d(0, I) > R.
Пусть расстояние от центра О окружности до прямой I больше радиуса R. Обозначим буквой F основание перпендикуляра, проведенного из центра О окружности к прямой I (рис. 3). Тогда OF = d(0, I), d(0, I) > R.
Для любой точки X прямой выполняется условие 

Касательная к окружности
Рассмотрим случай, когда прямая и окружность имеют единственную общую точку. Прямая, имеющая единственную общую точку с окружностью, имеет специальное название — касательная.
Определение. Касательной к окружности называется прямая, которая имеет с окружностью только одну общую точку.
Единственная общая точка прямой и окружности называется точкой касания прямой и окружности.
Если прямая I имеет единственную общую точку А с окружностью, то говорят, что прямая I касается окружности в точке А.
Теорема 1 (о свойстве касательной). Касательная к окружности перпендикулярна радиусу этой окружности, проведенному в точку касания.
1) Пусть прямая I касается окружности 
2) Предположим, что это не так. Тогда радиус ОА является наклонной к прямой I. Перпендикуляр, проведенный из точки О к прямой I, меньше наклонной ОА, следовательно, расстояние от центра окружности до прямой
меньше радиуса. Значит, прямая и окружность имеют две общие точки, что противоречит условию. Таким образом, прямая I перпендикулярна радиусу ОА.
Рассмотрим следствия из данной теоремы.
Пусть через точку А проведены две прямые, касающиеся окружности 
Следствие 1. Отрезки касательных к окружности, проведенные из одной точки, равны.
1) Пусть АВ и АС — отрезки касательных, проведенные из точки А (рис. 5). Для доказательства равенства АВ = АС рассмотрим треугольники АВО и АСО.
2) По свойству касательной 

3)
Следствие 1 доказано.
Из равенства треугольников АВО и АСО вытекает также, что 
Следствие 2. Отрезки касательных к окружности, проведенные из одной точки, составляют равные углы с прямой, проходящей через эту точку и центр окружности.
Теперь докажем признак, который позволяет устанавливать, в каком случае прямая касается окружности. Оказывается, для этого достаточно установить, что прямая перпендикулярна радиусу и проходит через его конец, лежащий на окружности.
Теорема 2 (признак касательной). Если прямая перпендикулярна радиусу окружности и проходит через его конец, лежащий на окружности, то она касается этой окружности.
1) Пусть прямая I проходит через точку А окружности и перпендикулярна радиусу О А (рис. 6). Для доказательства того, что прямая I касается окружности, достаточно доказать, что она имеет с этой окружностью единственную общую точку.
2) Так как точка А лежит на окружности и прямая I проходит через точку А, то А — общая точка прямой I и окружности.
3) Других общих точек прямая I и окружность не имеют. Действительно, для любой точки 

Таким образом, точка А — единственная общая точка прямой I и окружности, а, значит, прямая I — касательная к окружности.
Пример №1
Через точку А, находящуюся от центра О окружности на расстоянии 10 см, проведены две касательные АВ и АС, где Б и С — точки касания. Вычислите площадь 
Решение:
1) Площадь четырехугольника АВОС равна сумме площадей треугольников АВО и АСО.
2) По свойству касательной 
3) Отрезки касательных к окружности, проведенные из одной точки, равны. Следовательно, АВ=АС = 8 см. Теперь, применив теорему Пифагора, вычислим
Таким образом, 
Ответ: 
Пример №2
Точка F — середина основания ВС равнобедренного треугольника АБС. Докажите, что прямая ВС является касательной к окружности 
Доказательство.
1) Прямая ВС проходит через конец F радиуса окружности 
2) В равнобедренном треугольнике AВС отрезок AF — медиана, проведенная к его основанию. Следовательно, 
Что и требовалось доказать.
Пример №3
Точка А лежит вне окружности 
1) Пусть прямая I, проходящая через точку А и касающаяся окружности 


2) Рассмотрим окружность coj, диаметром которой является отрезок АО, т. е. 








касательной к окружности следует, что прямые АВ и АС являются касательными. Теперь понятна последовательность необходимых построений. 
1) Проводим отрезок О А, соединяющий центр О данной окружности и точку А (рис. 10, а).
2) Строим середину 

где
3) Строим окружность 
4) Прямые АВ и АС — искомые касательные к данной окружности.
Доказательство. По построению 

Взаимное расположение двух окружностей
Рассмотрим вопрос о взаимном расположении двух окружностей в плоскости. Возможны следующие случаи взаимного расположения двух различных окружностей:
1) окружности не имеют общих точек (в этом случае говорят, что они не пересекаются (рис. 11, а ));
2) окружности имеют две общие точки (в этом случае говорят, что окружности пересекаются (рис. 11, б));
3) окружности имеют только одну общую точку, и одна из окружностей лежит внутри круга, ограниченного другой окружностью (в этом случае говорят, что они касаются внутренним образом (рис. 12, а ));
4) окружности имеют только одну общую точку, и ни одна из окружностей не лежит внутри круга, ограниченного другой окружностью (в этом случае говорят, что они касаются внешним образом, (рис. 12, б)).
Пример №4
Докажите, что если две окружности 

Доказательство.
1) Пусть окружности 
2) Докажем, что точка А лежит на отрезке 



3) Пусть F — точка, симметричная точке А относительно прямой 


4) Докажем, что 

Справедливо и обратное утверждение.
Пример №5
Докажите, если расстояние между центрами двух окружностей, лежащих в плоскости, равно сумме их радиусов, то такие окружности касаются внешним образом.
1) Пусть даны две окружности 

2) На отрезке


3) Докажем, что окружности не имеют других общих точек. Действительно, на прямой 






4) Таким образом, предположение о существовании еще одной точки, принадлежащей окружностям 

5) Докажем, что окружности касаются внешним образом. Для любой точки F окружности










Пример №6
Докажите, что две окружности касаются внутренним образом тогда и только тогда, когда расстояние между их центрами равно модулю разности их радиусов.
Другими словами, если окружности 


Пример №7
Две окружности с центрами в точках О и К, радиусы которых равны 16 см и 9 см соответственно, касаются внешним образом в точке С. К окружностям проведена общая касательная АВ, где точки А и В — точки касания.
Общая касательная, проведенная через точку С, пересекает касательную АВ в точке Т (рис. 14, а). Вычислите длину отрезка СТ.
Решение:
Для решения задачи воспользуемся тем, что отрезки касательных, проведенные к окружности из одной точки, равны, а радиусы, проведенные в точку касания, перпендикулярны касательной. Учтем также, что окружности касаются внешним образом, а значит, расстояние между их центрами равно сумме их радиусов.
1) Так как отрезки касательных к окружности, проведенные из одной точки, равны, то ТС = ТА = ТВ, т. е. 
2) Так как окружности касаются внешним образом, то ОК = ОС + СК = 16 + 9 = 25 (см).
3) Рассмотрим четырехугольник ODBK. Пусть 


4) Четырехугольник ODBK — параллелограмм, так как его противолежащие стороны параллельны, значит, DB = ОК = = 25 см. Кроме того, DA = ОА — OD = ОА — КВ =16-9 = 7 (см).
Тогда 
Ответ: ТС = 12 см.
Центральные и вписанные углы
В данном параграфе изучим понятия центрального и вписанного углов.
Определение. Центральным углом окружности называется угол с вершиной в центре этой окружности.
Например, на рисунке 18, а изображен центральный угол TOF, который меньше развернутого угла, а на рисунке 18, б — центральный угол SOD — больше развернутого угла.
Любые две различные точки А и В окружности служат концами двух дуг. Для различия этих дуг на каждой из них отмечается некоторая промежуточная точка. Например, если на дугах отмечены точки F и Т, то в этом случае дуги обозначаются 
Дуга АВ окружности называется полуокружностью, если ее концы служат концами диаметра этой окружности.
Например, на рисунке 19, б изображены полуокружности ALB и АС В.
Пусть точки А и Б не являются концами диаметра окружности с центром в точке О. Тогда лучи ОА и ОБ служат сторонами двух центральных углов, один из которых меньше, а другой больше развернутого угла (рис. 20, а). 
Дуга АВ окружности 
Если дуга окружности лежит внутри соответствующего ей центрального угла, который меньше развернутого угла, то говорят, что эта дуга меньше полуокружности.
Если дуга окружности лежит внутри соответствующего ей центрального угла, который больше развернутого угла, то говорят, что дуга больше полуокружности.
Например, на рисунке 20, а изображены дуга AFB, которая меньше полуокружности, и дуга АТВ — больше полуокружности.
Для сравнения дуг окружности вводится понятие градусной меры дуги окружности.
Дадим определение градусной меры дуги окружности.
Определение. Градусной мерой дуги окружности называется градусная мера соответствующего ей центрального угла.
Градусная мера дуги АВ, как и сама дуга, обозначается 
Таким образом, если дуга АВ окружности меньше полуокружности, a 

Если дуга АВ является полуокружностью, то ее градусная мера равна 180° (рис. 20, б).
Градусная мера дуги АТВ, которая больше полуокружности и дополняет дугу АВ, меньшую полуокружности, до окружности, равна 360° 
Понятие градусной меры дуги позволяет определить понятие равенства дуг окружности.
Две дуги одной и той же окружности называются равными, если равны их градусные меры.
Если градусная мера дуги АВ равна 33°, то пишут 
Рассмотрим примеры. Пусть диагонали квадрата ABCD пересекаются в точке О. Окружность 



Рассмотрим еще один пример. Пусть точка О — центр окружности, отрезок АВ — хорда окружности, равная ее радиусу, а отрезок АС — диаметр окружности (рис. 21, б). 
Тогда градусная мера дуги АВ, которая меньше полуокружности, равна 60°, так как треугольник АОВ — равносторонний, а значит, градусная мера соответствующего ей центрального угла АОВ равна 60°. Градусная мера дуги ВС, которая меньше полуокружности, равна 120°, так как градусная мера соответствующего ей центрального угла ВОС равна 120°.
Можем вычислить градусную меру дуги ВАС, которая больше полуокружности: 
Вписанные углы. Рассмотрим понятие вписанного угла
Определение. Угол называется вписанным в окружность, если он меньше развернутого угла, вершина его лежит на окружности, а стороны пересекают эту окружность.
Например, на рисунке 22, а изображен вписанный угол TOF. Если точки А, В и С лежат на окружности, то каждый из угол ABC, ВСА, САВ является вписанным (рис. 22, б).
Пусть 
Например, на рисунке 22, в изображены вписанные углы ВАС, ВОС и BFC, которые опираются на одну и ту же дугу ВС.
Теперь докажем теорему о вписанном угле.
Теорема 1(о вписанном угле). Градусная мера вписанного угла равна половине градусной меры, дуги, на которую он опирается.
Пусть вписанный в окружность
Докажем, что 
Первый случай. Центр О окружности лежит на одной из сторон угла ABC, например на стороне ВС (рис. 23).
1) Дуга АС меньше полуокружности, следовательно, 
2) Угол АОС — внешний угол равнобедренного треугольника АОВ, значит, 
3) Так как углы при основании равнобедренного треугольника АОВ равны, то 
4) Так как 
Второй случай. Центр О окружности лежит во внутренней области угла.
1) Пусть D — точка пересечения луча ВО и дуги АС (рис. 24). Тогда по доказанному в первом случае
Таким образом, 
Третий случай. Центр О окружности лежит во внешней области угла ABC.
1) Пусть D — точка пересечения луча ВО с окружностью (рис. 25). Тогда согласно доказанному в первом случае 
Таким образом, 
Из данной теоремы получим следующие следствия.
Следствие 1. Вписанные углы, опирающиеся на одну и ту же дугу, равны (рис. 26, а).
Следствие 2. Вписанный угол, опирающийся на полуокружность, прямой (рис. 26, б).
Рассмотрим пример. Пусть хорда АВ соединяет концы дуги AFB и равна радиусу окружности со (О, R). Тогда градусная мера каждого из вписанных углов, опирающихся на дугу AFB, равна 30° (рис. 26, в). Действительно, градусная мера центрального угла АОВ равна 60°, значит, 
Теорема 2 (об угле между хордой и касательной).
Градусная мера угла, сторонами которого служат касательная и хорда, равна половине градусной меры дуги, расположенной внутри этого угла.
Доказательство.
Первый случай. Пусть угол FAB — острый (рис. 27, о.).
1) Проведем диаметр АС. Тогда вписанный угол СВ А опирается на полуокружность, значит, по следствию 2 он прямой, т. е. 
2) Треугольник СВА — прямоугольный, следовательно, 
3) Так как диаметр АС перпендикулярен касательной FA, то 

Следовательно, 
Второй случай. Пусть угол FAB — тупой (рис. 27, б). Проведем диаметр СА. Тогда
но дуга ВСА лежит внутри тупого угла FAB.
Свойство пересекающихся хорд. Теорема о касательной и секущей
Теорема 3 (об отрезках пересекающихся хорд). Если две хорды окружности пересекаются, то произведение длин отрезков одной хорды равно произведению длин отрезков другой хорды. 
1) Проведем хорды АС и BD (рис. 28, б). Рассмотрим треугольники АОСи DOB.
2) Заметим, что 

3) Треугольник АОС подобен треугольнику DOB по первому признаку подобия треугольников, так как 
4) Из подобия треугольников АОС и DOB следует, что
Значит, 
Пусть через точку S, лежащую вне окружности, проведена секущая, которая пересекает окружность в точках С и Б, и SC
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Урок геометрии по теме «Правильные многоугольники. Решение задач». 9-й класс
Разделы: Математика
Класс: 9
Основная цель:
Проверка домашнего задания.
а) Индивидуальная работа у доски.
Построить правильный многоугольник: n=3, n=4, n=6.
б) Фронтальный опрос.
Задания для класса.
Что такое многоугольник? Какой многоугольник называется выпуклым?
Какой многоугольник называется правильным?
Что называется углом выпуклого многоугольника при данной вершине?
Что является внешним углом выпуклого многоугольника при данной вершине?
Чему равна сумма углов выпуклого многоугольника?
Многоугольник называется вписанным в окружность, если :
Многоугольник называется описанным около окружности, если :
Правильный выпуклый многоугольник является вписанным и :
а) Заполните таблицу:
| Число сторон многоугольника n | Выражение радиусов вписанной rn и описанной Rn окружностей через сторону an многоугольника | |
| n | R= | r= | 
| 3 | R3= | r3= | 
| 4 | R4= | r4= | 
| 6 | R6= | r6= | 
б) Заполните таблицу:
| Число сторон многоугольника n | Выражение стороны an многоугольника через радиусы вписанной rn и описанной Rn окружностей | |
| n | an= | an= | 
| 3 | a3= | a3= | 
| 4 | a4= | a4= | 
| 6 | a6= | a6= | 
в) Устное решение задач(№ 1, 2, 3) по готовым чертежам.
Задача 1. Радиус окружности, вписанной в квадрат, равен 1 см. Найдите радиус R описанной окружности около этого квадрата. (Ответ: 
Задача 2. Периметр правильного шестиугольника, описанного около окружности, равен 
Задача 3. Периметр квадрата, вписанного в окружность, равен 

Геометрический диктант.
- Какие четырехугольники являются правильными многоугольниками?
- Чему равна градусная мера внутреннего угла правильного n — угольника?
- Чему равна градусная мера внешнего угла правильного треугольника?
- Сколько сторон имеет правильный многоугольник, если его угол равен 108 0 ?
- Какой многоугольник получится, если последовательно соединить середины сторон правильного шестиугольника?
Ответы к математическому диктанту
| Номер задания | Ответ | 
| 1 | 3, 4, 5, 7 | 
| 2 | 5 | 
| 3 | 3 | 
| 4 |  | 
| 5 |  | 
| 6 | 5 | 
| 7 | 6 | 
Закрепление. Решение задач.
Задача №1. В правильный шестиугольник ABCDEF, со стороной 6 см, вписан правильный треугольник A1B1C1. Найдите отношение радиуса окружности, вписанной в треугольник A1B1C1, к радиусу окружности, вписанной в шестиугольник ABCDEF.
Найти: 
ABCD — трапеция, так как 

 
 
 
Ответ: 
Задача №2. Наглядно — поисковая задача. В правильный треугольник MNP вписана окружность. Отрезок NR перпендикулярен отрезку MP и пересекает его в точке K. Угол KMR=30 0 . Найдите радиус вписанной окружности в треугольник MNP и её длину.
правильный треугольник MNP, MR=
Найти: OE, C (длина окружности).
MK=KP (так как центр вписанной окружности лежит на пересечении срединных перпендикуляров к сторонам треугольника). Рассмотрим треугольник MKP. MK=MR* 

 
Ответ: OE =
Задача №3. Ширина кольца, образованного двумя концентрическими окружностями, равна 2. Хорда большей окружности, касательная к меньшей, равна 8. Найти радиусы окружностей.
Задача №4 . Минутная стрелка часов на здании Московского университета имеет длину 4,13 м, а часовая — 3,70м. Какой путь пройдет конец каждой из этих стрелок в течение суток?
(Ответ:14,8 

Задача №5 * . Основания равнобокой трапеции равны 8 см и 18 см. Найдите радиус окружности, вписанной в трапецию.
Задача №6 * . Около трапеции с высотой 6 см описана окружность. Угол между радиусами окружности, проведенными к концам боковой стороны, равен 60 0 . Найдите площадь трапеции.
Задача №7. (расчетно-практическая)
Чтобы сделать выкройку юбки «Солнце» для девочки, построим две концентрические окружности. Длина одной из этих окружностей равна длине «окружности талии» — 62см, а радиус другой больше радиуса первой на 60 см. Вычислите длину окружности по нижнему краю юбки. Сколько ткани надо иметь для пошива такой юбки? Сколько метров ленты пойдет на отделку такой юбки? (Ответ: на первый вопрос — 140 
Проведите измерения и расчеты для себя.
Окружность талии = с =: см
Rталии=
С=2
Найдите больший угол треугольника, если величины его углов образуют арифметическую прогрессию с разностью 15
Ответ: а) 80 



Вписанный в окружность угол, величиной 40 0 , опирается на дугу длиной 16 см. Найдите длину окружности.
Ответ: а) 164 см; б) 2 

В треугольнике ABC AB=2, BC=3 и угол BAC в три раза больше угла BCA. Найдите радиус описанной окружности около этого треугольника.
Найдите центральный угол окружности радиуса 4 см, если длина соответствующей дуги равна: а) 

🔥 Видео
Всё про углы в окружности. Геометрия | МатематикаСкачать

9 класс, 22 урок, Окружность, описанная около правильного многоугольникаСкачать

Окружность вписанная в треугольник и описанная около треугольника.Скачать

9 класс, 23 урок, Окружность, вписанная в правильный многоугольникСкачать

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

Вписанная и описанная окружности. ЗадачиСкачать

Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)Скачать

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать

Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.Скачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Четырехугольники, вписанные в окружность. 9 класс.Скачать

Многоугольники. Математика 8 класс | TutorOnlineСкачать

Геометрия 8 класс : Решение задач. Вписанная окружностьСкачать

Многоугольники. Практическая часть - решение задачи. 8 класс.Скачать

111. Окружность, вписанная в правильный многоугольникСкачать

Окружность, вписанная в правильный многоугольник | Геометрия 7-9 класс #106 | ИнфоурокСкачать









































































