Реакция опоры на окружности

Сила реакции опоры

Сила реакции опоры — это сила, с которой опора действует на тело. Она направлена перпендикулярно поверхности, поэтому такую силу называют силой нормальной реакции. Обозначают ее символом N и измеряют в Ньютонах.

Видео:Урок 89. Движение по окружности (ч.1)Скачать

Урок 89. Движение по окружности (ч.1)

Тело находится на выпуклой или вогнутой поверхности

Рассмотрим рисунок 1. Тело находится на опоре и давит на нее своим весом. Опора реагирует на воздействие тела и отвечает ему силой (vec). Эта сила направлена перпендикулярно поверхности, вдоль вектора нормали, поэтому ее называют нормальной силой.

Примечания:

  • Нормаль – значит, перпендикуляр.
  • Искривленную, т.е., выпуклую, или вогнутую поверхность, можно считать частью сферы. Центр сферы – точка, она находится внутри сферы, от этой точки к поверхности сферы можно провести радиус.

(vec left( H right) ) – сила, с которой опора действует на тело.

Реакция опоры на окружности

Когда тело находится на выпуклой поверхности (рис. 1а), реакция направлена вдоль радиуса от центра сферы наружу, за ее пределы.

Если же тело находится на вогнутой части (рис. 1б) поверхности, реакция (vec) направлена по радиусу внутрь сферической поверхности к ее центру.

Видео:2.2. Сила тяжести и сила реакции опоры. Вес тела | Динамика | Александр Чирцов | ЛекториумСкачать

2.2. Сила тяжести и сила реакции опоры. Вес тела | Динамика | Александр Чирцов | Лекториум

Тело опирается на поверхность в двух точках

На рисунках 2а и 2б изображено продолговатое тело (к примеру, стержень), опирающееся на поверхности двумя своими точками.

Реакция опоры на окружности

В точках соприкосновения поверхность отвечает телу силой (vec) своей реакции. Видно, что в каждая сила реакции направлена перпендикулярно поверхности.

Cилы реакции (vec<N_>) и (vec<N_>) имеют различные направления и в общем случае не равны по модулю.

Примечание: Сила — это вектор. Между векторами можно ставить знак равенства, только, когда совпадают характеристики векторов.

Видео:№17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математикеСкачать

№17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математике

Как рассчитать силу нормальной реакции

Пусть тело давит на опору своим весом. В местах соприкосновения тела с опорой наблюдается упругая деформация. При этом опора стремится избавиться от возникшей деформации и вернуться в первоначальное состояние. Силы, с которыми опора упруго сопротивляется воздействию тела, имеют электромагнитную природу. Когда сближаются электронные оболочки атомов тела и опоры, между ними возникает сила отталкивания. Она и является силой реакции опоры на воздействие тела.

Примечание: Сила реакции (vec) распределяется по всей площади соприкосновения тела и опоры. Но для удобства ее обычно считают сосредоточенной силой. Ее изображают на границах соприкасающихся поверхностей исходящей из точки, расположенной под центром масс тела.

Для того, чтобы рассчитать силу реакции, нужно понимать законы Ньютона, уметь составлять силовые уравнения и знать, что такое равнодействующая.

На рисунке 3 изображены тела, находящиеся на горизонтальной – а) и наклонной – б) поверхностях.

Реакция опоры на окружности

Рассмотрим подробнее рисунок 3а. Тело на горизонтальной поверхности находится в покое. Значит, выполняются условия равновесия тела.

По третьему закону Ньютона, сила, с которой тело действует на опору, равна по модулю весу тела и направлена противоположно весу.

(m vec left( H right) ) – сила, с которой тело действует на опору;

(vec left( H right) ) – сила, с которой опора отвечает телу;

Рисунок 3б иллюстрирует тело на наклонной поверхности. Перпендикулярно соприкасающимся поверхностям проведена ось Oy. Проекция силы (m vec) на ось — это (mg_), она будет направлена противоположно реакции опоры (vec) и численно равна ей.

Примечание: Выражение «численно равна» нужно понимать, как «длины векторов равны».

(alpha left(text right) ) – угол между силой (mg) и осью Oy.

Видео:Урок 5. Движение по окружности. Решение задач. ЕГЭСкачать

Урок 5. Движение по окружности. Решение задач. ЕГЭ

Движение тела под действием нескольких сил по окружности

Из кодификатора по физике, 2020.

«1.2.4. Второй закон Ньютона: для материальной точки в ИСО

Реакция опоры на окружности

1.2.8. Сила упругости. Закон Гука:

Реакция опоры на окружности

1.2.9. Сила трения. Сухое трение. Сила трения скольжения: Реакция опоры на окружности

Сила трения покоя:

Реакция опоры на окружности

Реакция опоры на окружности

3. Определите значения проекций всех величин.

4. Решите полученные уравнения. При необходимости, исходя из физиче-ской природы, выразите силы через величины, от которых они зависят.

Задача 1. Мальчик массой 50 кг качается на качелях с длиной подвеса 4 м. Определите силу, с которой он давит на сиденье при прохождении нижнего положения со скоростью 6 м/с.

Решение. При использовании второго закона Ньютона, мы применяем силы, действующие на тело. Сила Fдавл – это сила, с которой мальчик давит на сиденье качелей. По третьему закону Ньютона, с такой же по величине силой, но противоположной по направлению, качели будут действовать на мальчика – это сила реакции опоры (N). Тогда

Реакция опоры на окружности

На мальчика действуют сила тяжести и сила реакции опоры (N). При движении по дуге окружности в нижней точке ускорение направлено к центру окружности (вверх). Ось Y направим вверх (рис. 1). Запишем второй закон Ньютона:

Реакция опоры на окружности

где , R=l. С учетом уравнений (1) и (2) получаем

Реакция опоры на окружности

Реакция опоры на окружности

Задача 2. На горизонтальном диске, который равномерно вращается вокруг вертикальной оси, проходящей через центр диска, лежит небольшая монета. Коэффициент трения между монетой и поверхностью диска равен 0,25. Угловая скорость вращения диска 5,0 рад/с. Определите максимальное расстояние (в см) между центром монеты и осью вращения, при котором монета не соскальзывает с диска.

Решение. На монету, лежащую на диске, действуют: сила тяжести и сила реакции опоры (N) — они направлены по вертикали (вдоль оси 0Y на рис. 2), сила трения (Fтр) — она направлена по горизонтали. Так как тело не движется, то сила трения — это сила трения покоя.

Монета вращается вместе с диском, поэтому у тела есть центростреми-тельное ускорение, направленное к центру диска. А так как на тело действует только одна горизонтальная сила (Fтр), то она будет направлена в ту же сторону, что и ускорение, т.е. к центру дис-ка.

Оси координат направим так, как показано на рис. 2. Запишем второй закон Ньютона:

Реакция опоры на окружности

При любом расстоянии _’ alt=’l>_’ /> тело начнет скользить по диску к краю. Тогда

Реакция опоры на окружности

Задача 3. Груз, подвешенный на нити длиной 1,4 м, двигаясь равно-мерно, описывает в горизонтальной плоскости окружность (конический ма-ятник). Определите скорость, с которой движется груз, если во время его движения нить образует с вертикалью постоянный угол в 30º.

Решение. На груз действуют сила тяжести и сила натяжения подвеса (T). При равномерном движении по окружности возникает центростремительное ускорение, направленное горизонтально. Оси координат выберем так, как показано на рис. 3. Запишем второй закон Ньютона:

Реакция опоры на окружности

Задача 4. По выпуклому мосту, радиус кривизны которого 90 м, со скоростью 54 км/ч движется автомобиль массой 2,0 т. В точке моста, направление на которую из центра кривизны моста составляет с направле-нием на вершину моста угол α, автомобиль давит с силой 14,4 кН. Определите угол α.

Решение. Сила Fд — это сила, с которой автомобиль давит на дорогу. По третьему закону Ньютона, с такой же по величине силой, но противоположной по направле-нию, дорога будет действовать на автомобиль, а это сила реакции опоры (N). Тогда

Реакция опоры на окружности

На автомобиль действуют сила тяжести , сила реакции опоры (N), сила трения (Fтр) и сила тяги (F). При движении по дуге окружности возникает центростремительное ускорение, которое направлено к центру кривизны (перпендикулярно поверхно-сти). Ось 0Y направим вдоль ускорения, чтобы не учитывать тангенциальное ускорение (рис. 4).

Видео:Возникновение силы реакции опорыСкачать

Возникновение силы реакции опоры

Как определить реакции в опорах?

Автор: Константин Вавилов · Опубликовано 03.02.2016 · Обновлено 15.05.2018

Привет! В этой статье, предлагаю поговорить о реакциях опор, еще известных как опорные реакции. Для успешного освоения курса – «сопротивление материалов», каждый студент должен уметь определять реакции в опорах, и этому уделяют особое внимание на термехе. А курс термеха, по традиции, читают до сопромата. Для тех, кто проспал механику на первом курсе, я подготовил данную статью, чтобы каждый желающий мог приобрести навыки по расчету опорных реакций.

Реакция опоры на окружности

Видео:Урок 90. Движение по окружности (ч.2)Скачать

Урок 90. Движение по окружности (ч.2)

Что такое реакция опоры?

Реакция опоры – это та сила, которая возникает в опоре от действия внешней нагрузки. В зависимости от конструкции опоры и ее назначения, в ней может появляться разное количество реакций, это может быть как сила, так и момент.

В начале этой статьи, расскажу о том, что должен уже уметь читатель, для успешного освоения данного урока. Если у Вас есть проблемы по поднятым вопросам на старте статьи, переходите по ссылкам на другие материалы на нашем сайте, после чего возвращайтесь к нам на чай реакции. Во второй части статьи, посмотрим, как вычисляются реакции на простейшем примере – балки, загруженной по центру сосредоточенной силой. Тут я покажу, как пользоваться уравнениями равновесия статики, как их правильно составлять. Дальше по плану, научу учитывать распределенную нагрузку, на примере той же балки. И завершать данный урок, будет пример определения реакций для плоской рамы, загруженной всевозможными типами нагрузок. Где применим уже все фишки, о которых я буду рассказывать по ходу урока. Что же, давайте начнем разбираться с реакциями!

Что вы должны уже уметь?

В этом блоке статье, я расскажу, как и обещал, что Вы должны УЖЕ уметь, чтобы понять то, что я буду докладывать дальше, про реакции опор.

Должны уметь находить сумму проекций сил

Да, это то, что Вам когда-то рассказывали на термехе, как собственно, и опорные реакции. Если Вы шарите немного в этих проекциях, то можете смело переходить к следующему пункту. Если же нет, то специально на этот случай, у меня есть другая статья, про проекции сил. Переходите, просвещайтесь, после чего, обязательно, возвращайтесь сюда!

Должны уметь составлять сумму моментов относительно точки

Немного теории! Познакомимся для начала с самим понятием момент силы. Момент силы — это произведение силы на плечо. Где плечо — это кратчайшее расстояние от точки до силы, то есть перпендикуляр. Проиллюстрирую написанное:

Реакция опоры на окружности

На изображении показано, как определить момент силы F, относительно точки O.

Так же, для моментов, нужно задаться каким-то правилом знаков. Сила относительно точки может поворачивать как по часовой стрелке, так и против нее. Я в своих уроках буду придерживаться такого правила:

  • Если сила относительно точки крутит ПРОТИВ часовой стрелке, то момент положительный.
  • Если она крутит ПО часовой стрелки, то соответственно момент отрицательный.

Реакция опоры на окружности

Причем, это правило условно! Какое правило Вы будете использовать совсем не важно, результат получите тот же самый. В теоретической механике, к примеру, делают также как я рассказываю.

Должны разбираться в основных видах опор

Теперь поговорим о самих опорах. В этой статье, будем работать с двумя типами опор: шарнирно-подвижной и шарнирно-неподвижной.

Реакция опоры на окружности

Шарнирно-подвижная опора препятствует вертикальному перемещению элементу конструкции, в связи с чем, в ней, под действием внешней нагрузки возникает вертикальная реакция. Обозначают ее обычно как Ri, где i — точка крепления опоры.

Шарнирно-неподвижная опора имеет две реакции: вертикальную и горизонтальную. Так как препятствует перемещению в этих двух направлениях.

Реакция опоры на окружности

Вообще-то способов закрепления элементов конструкций и их условных обозначений достаточно много, но в рамках этой статьи их рассматривать не будем.

Видео:Физика - движение по окружностиСкачать

Физика - движение по окружности

Примеры определения сил реакций опор

Вроде, всю подготовительную информацию дал, теперь будем рассматривать конкретные примеры. И начнем с простейшей расчетной схемы балки.

Определение реакций опор для балки

Возьмем балку на двух опорах, длиной 2 метра. Загрузим ее, посередине пролета, сосредоточенной силой:

Реакция опоры на окружности

Для этой расчетной схемы, выгодно записать такое условие равновесия:
Реакция опоры на окружностиТо есть, будем составлять две суммы моментов относительно опорных точек, из которых можно сразу выразить реакции в опорах. В шарнирно-неподвижной опоре горизонтальная реакция будет равна нулю, ввиду того, что горизонтальные силы отсутствуют. Последним уравнением, взяв сумму проекций на вертикальную ось, сможем проверить правильность нахождения опорных реакций, это сумма должна быть равна нулю.

Введем систему координат, пустим ось х вдоль балки, а ось y вертикально. Обозначим реакции в опорах как RA и RB:

Реакция опоры на окружности

Запишем уравнение моментов, относительно точки А. Сила F поворачивает ПО часовой стрелки, записываем ее со знаком МИНУС и умножаем на плечо. Сила RB поворачивает ПРОТИВ часовой стрелки, пишем ее со знаком ПЛЮС и умножаем на плечо. Все это приравниваем к нулю:

Реакция опоры на окружности

Из полученного уравнения выражаем реакцию RB.

Реакция опоры на окружности

Первая реакция найдена! Вторая реакция находится аналогично, только теперь уравнение моментов записываем относительно другой точки:

Реакция опоры на окружности

Реакция опоры на окружности

После нахождения реакций, делаем проверку:

Реакция опоры на окружности

Определение реакций опор для балки с распределенной нагрузкой

Теперь рассмотрим балку, загруженную распределенной нагрузкой:

Реакция опоры на окружности
Перед тем как посчитать реакции опор, распределенную нагрузку нужно свернуть до сосредоточенной силы. Если умножить интенсивность q на длину участка, на которой действует нагрузка, получим силу Q. Сила Q будет находиться ровно посередине балки, как и сила F в нашем первом примере:

Реакция опоры на окружности

Реакция опоры на окружности

Подробно комментировать нахождение реакций в опорах здесь, не буду. Просто приведу решение:

Реакция опоры на окружности

Реакция опоры на окружности

Реакция опоры на окружности

Реакция опоры на окружности

Реакция опоры на окружности

Реакция опоры на окружности

Определение опорных реакций для плоской рамы

Теперь, после освоения азов по расчету реакций, предлагаю выполнить расчет плоской рамы. Для примера, возьмем раму, загруженную всевозможными видами нагрузок:

Реакция опоры на окружности

Проводим ряд действий с расчетной схемой рамы:

  • заменяем опоры на реакции;
  • сворачиваем распределенную нагрузку до сосредоточенной силы;
  • вводим глобальную систему координат x и y.

Реакция опоры на окружности

Для такой расчетной схемы, лучше использовать следующую форму условий равновесия:

Реакция опоры на окружностиСоставив первое уравнение, относительно точки A, сразу найдем реакцию в опоре B:

Реакция опоры на окружности

Реакция опоры на окружности

Реакция опоры на окружности

Записав второе уравнение, сумму проекций на ось х, найдем горизонтальную реакцию HA:

Реакция опоры на окружности

Реакция опоры на окружности

И, наконец, третье уравнение, позволит найти реакцию RA:

Реакция опоры на окружности

Реакция опоры на окружности

Не пугайтесь отрицательного значения реакции! Это значит, что при отбрасывании опоры, мы не угадали с направлением этой силы.

Расчет же показал, что RA, направленна в другую сторону:

Реакция опоры на окружности

В итоге, получили следующие реакции в опорах рамы:

Реакция опоры на окружности

Осталось проверить наши расчеты! Для этого предлагаю записать уравнение моментов, относительно точки B. И если, эта сумму будет равна нулю, то расчет выполнен верно:

Реакция опоры на окружности

Реакция опоры на окружности

Реакция опоры на окружности

Как видим, расчет реакций выполнен правильно!

На этом заканчиваю данный урок. Если у Вас остались какие-то вопросы по нахождению опорных реакций, смело задавайте их в комментариях к этой статье. Обязательно на все отвечу!

Спасибо за внимание! Если понравилась данная статья, расскажите о ней своим одногруппникам, не жадничайте 🙂

Также рекомендую подписаться на наши соц. сети, чтобы быть в курсе обновлений материалов проекта.

🎬 Видео

Определение реакций опор в балке. Сопромат.Скачать

Определение реакций опор в балке. Сопромат.

Движение по окружности. Нормальное и тангенциальное ускорение | 50 уроков физики (4/50)Скачать

Движение по окружности. Нормальное и тангенциальное ускорение | 50 уроков физики (4/50)

ЕГЭ 2021 по физике. Движение по окружности: это надо знать всемСкачать

ЕГЭ 2021 по физике. Движение по окружности: это надо знать всем

Определение реакций опор простой рамыСкачать

Определение реакций опор простой рамы

Вес и сила реакции опоры. Конспекты по физике ОГЭ — https://vk.cc/cfy0eh 📚 #огэфизика #физикаСкачать

Вес и сила реакции опоры. Конспекты по физике ОГЭ — https://vk.cc/cfy0eh 📚 #огэфизика #физика

Определение реакций опор простой рамыСкачать

Определение  реакций опор простой рамы

Динамика движения по окружности. Алгоритм решения задач.Скачать

Динамика движения по окружности. Алгоритм решения задач.

Физика, 11 класс, ЕГЭ, 30 задача. Движение по окружности. Пример 5Скачать

Физика, 11 класс, ЕГЭ, 30 задача. Движение по окружности. Пример 5

Задача на движение по окружностиСкачать

Задача на движение по окружности

Движение тел по окружностиСкачать

Движение тел по окружности

Вес тела. Невесомость и перегрузки. 10 класс.Скачать

Вес тела. Невесомость и перегрузки. 10 класс.

Урок 62. Сила тяжести и вес тела. Невесомость.Скачать

Урок 62. Сила тяжести и вес тела. Невесомость.

9 класс, 24 урок, Движение тел по окружностиСкачать

9 класс, 24 урок, Движение тел по окружности
Поделиться или сохранить к себе: