Зависимость между элементами треугольника

Соотношения между сторонами и углами треугольника — свойства, правила и теоремы

Зависимость между элементами треугольника

Содержание
  1. О многоугольнике с тремя сторонами
  2. Существование фигуры
  3. Важные линии
  4. Соотношение отрезков и углов
  5. Большие и меньшие длины
  6. Теоремы косинусов и синусов
  7. Прямоугольный треугольник
  8. Треугольник. Числовые зависимости между элементами треугольника (сторон, высот, медиан).
  9. Вычисление высоты треугольника по его сторонам.
  10. Вычисление медиан треугольника по его сторонам.
  11. Треугольник. Формулы и свойства треугольников.
  12. Типы треугольников
  13. По величине углов
  14. По числу равных сторон
  15. Вершины углы и стороны треугольника
  16. Свойства углов и сторон треугольника
  17. Теорема синусов
  18. Теорема косинусов
  19. Теорема о проекциях
  20. Формулы для вычисления длин сторон треугольника
  21. Медианы треугольника
  22. Свойства медиан треугольника:
  23. Формулы медиан треугольника
  24. Биссектрисы треугольника
  25. Свойства биссектрис треугольника:
  26. Формулы биссектрис треугольника
  27. Высоты треугольника
  28. Свойства высот треугольника
  29. Формулы высот треугольника
  30. Окружность вписанная в треугольник
  31. Свойства окружности вписанной в треугольник
  32. Формулы радиуса окружности вписанной в треугольник
  33. Окружность описанная вокруг треугольника
  34. Свойства окружности описанной вокруг треугольника
  35. Формулы радиуса окружности описанной вокруг треугольника
  36. Связь между вписанной и описанной окружностями треугольника
  37. Средняя линия треугольника
  38. Свойства средней линии треугольника
  39. Периметр треугольника
  40. Формулы площади треугольника
  41. Формула Герона
  42. Равенство треугольников
  43. Признаки равенства треугольников
  44. Первый признак равенства треугольников — по двум сторонам и углу между ними
  45. Второй признак равенства треугольников — по стороне и двум прилежащим углам
  46. Третий признак равенства треугольников — по трем сторонам
  47. Подобие треугольников
  48. Признаки подобия треугольников
  49. Первый признак подобия треугольников
  50. Второй признак подобия треугольников
  51. Третий признак подобия треугольников
  52. 📸 Видео

Видео:Геометрия 7 класс (Урок№24 - Соотношения между сторонами и углами треугольника. Неравенство треуг.)Скачать

Геометрия 7 класс (Урок№24 - Соотношения между сторонами и углами треугольника. Неравенство треуг.)

О многоугольнике с тремя сторонами

Соотношение углов и сторон в треугольнике интуитивно можно понять, если хорошо представлять эту фигуру. Речь идет о плоском объекте, который состоит всего из трех отрезков. Они расположены таким образом, что начало первого совпадает с концом последнего, то есть они пересекаются. Каждый отрезок представляет собой независимую сторону фигуры. Точка пересечения является вершиной, а соответствующий ей угол является внутренним.

Таким образом, два ключевых элемента образуют рассматриваемую фигуру:

И вершин, и сторон в любом треугольнике по три, поэтому его принято обозначать большими латинскими буквами, например, ABC или MNK. Малые буквы резервируют для обозначения длин сторон, например, a, b, c.

Зависимость между элементами треугольника

На первый взгляд может показаться, что рассматриваемый объект является несложным, и в нем нечего изучать. Действительно, он является самым простым по построению многоугольником, однако, он обладает большим количеством свойств, количественное и качественное знание которых требуют понимания многих теорем.

Существование фигуры

Пусть имеется три отрезка, и необходимо понять, возможно ли из них построить треугольник. Это можно сделать с помощью одного простого правила, которое можно сформулировать следующим образом: любая сторона треугольника всегда меньше суммы длин двух других.

Зависимость между элементами треугольника

Знание этого правила является очень важным и эффективным инструментом при решении задач. Например, из отрезков с условными длинами 1, 2 и 4 построить треугольник невозможно, а из 2, 3, 4 это сделать можно.

Помимо соотношения длин сторон существует также еще одна теорема, которая гласит, что во всяком треугольнике сумма его внутренних углов всегда равна 180 °. Благодаря знанию этой теоремы можно все рассматриваемые фигуры разделить на три типа:

  1. Остроугольные. В них все три угловые меры меньше 90 °. При этом возможны случаи взаимного их равенства, то есть каждый будет составлять 60 °. Такие треугольники называются равносторонними или правильными. Равны могут быть между собой также два угла, это будет уже равнобедренный треугольник, у которого боковые стороны имеют одинаковую длину.
  2. Тупоугольные. Поскольку сумма составляет 180 °, то по определению в рассматриваемом многоугольнике не может быть больше одного тупого угла. Тупоугольные фигуры могут иметь либо произвольный тип, когда все их отрезки различаются, либо являться равнобедренными.
  3. Прямоугольные. Это специальный тип треугольников, о котором известно многое, и который разграничивает два предыдущих типа. В них один угол равен 90 °, а два других являются острыми.

Полноты ради следует сказать о вырожденных фигурах. К ним относятся такие многоугольники, у которых тупой стремится к 180 °. Несложно представить, что в этом случае два других будут обращаться в ноль, а сумма противолежащих им сторон окажется равной длине отрезка, расположенного напротив тупого угла. На плоскости вырожденный треугольник представляет отрезок, его площадь стремится к нулю.

Важные линии

Несмотря на всю простоту построения треугольника, при решении задач могут понадобиться дополнительные отрезки. Внутри фигуры существует целая гамма типов этих отрезков, наиболее важными из них являются следующие:

Зависимость между элементами треугольника

  1. Медиана — делящий на две равные по площади части исходный треугольник. Отрезок проводится из вершины к середине противоположной стороны.
  2. Биссектриса. Ею называют отрезок, который на две половины делит угол при произвольной вершине.
  3. Высота. Этот элемент проводится также из вершины, но по отношению к противоположной стороне он является перпендикуляром. Таким образом, высота делит исходную фигуру на два прямоугольных геометрических объекта, которые в общем случае между собой не равны.
  4. Медиатриса — это серединный перпендикуляр, то есть он сочетает свойства медианы и высоты, однако, через вершину треугольника он может не проходить. Медиатрисами пользуются при построении описанной окружности.
  5. Средняя линия — это отрезок, который посередине пересекает две стороны треугольника. Его длина всегда будет в два раза меньше стороны фигуры, которой он параллелен. Средняя линия приводит к созданию подобной исходной фигуры, которая в два раза меньше.

Для правильных, равнобедренных и прямоугольных треугольников некоторые из названных отрезков могут совпадать друг с другом, а также со сторонами фигуры. Например, в прямоугольном треугольнике две малые стороны (катеты) также являются высотами.

Видео:Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.

Соотношение отрезков и углов

Задачи на соотношение отрезков и угловых мер в рассматриваемой фигуре могут требовать либо качественный, либо количественный ответ. В первом случае следует провести определенное доказательство, опираясь на известные аксиомы и теоремы о сторонах треугольника и их следствия. Во втором же случае следует пользоваться формулами и выражениями, которые содержат тригонометрические функции. В действительности оба типа задач связаны между собой. Так, прежде чем использовать какую-либо формулу, следует доказать возможность ее применения в конкретной ситуации.

Большие и меньшие длины

Зависимость между элементами треугольника

Основная теорема о соотношении между элементами в рассматриваемом типе многоугольников гласит, что против большего угла лежит большая сторона. Ее доказательство провести несложно, если построить треугольник, например, тупоугольный. Из тупого провести отрезок к противоположной стороне таким образом, чтобы он образовывал новый равнобедренный треугольник внутри исходного. После этого следует воспользоваться тем свойством, что внешний угол треугольника всегда больше внутреннего.

Следуя условию равенства углов в построенном равнобедренном треугольнике, легко показать, что против тупого всегда находится самый длинный отрезок.

Обратно эта теорема также справедлива, то есть против большей стороны треугольника лежит больший угол. Ее справедливость понятна каждому школьнику на интуитивном уровне, а доказательство заключается в переборе возможных трех вариантов соотношения между отрезками (больше, меньше, равно) и в привлечении уже доказанной теоремы.

Рассмотренные теоремы приводят к двум важным следствиям:

  1. Против равных сторон лежат равные углы, и наоборот. Следствие актуально для равносторонних и равнобедренных фигур.
  2. Гипотенуза в треугольнике с прямым углом является самой длинной стороной, поскольку она лежит напротив самого большого угла.

Рассмотренные теоремы и их следствия активно используются при изучении подобных фигур. Поскольку напротив равных углов двух треугольников лежат соответствующие им длины отрезков, то последние будут попарно относиться друг к другу с определенным коэффициентом подобия.

Теоремы косинусов и синусов

Количественной характеристикой соотношения сторон и углов являются знаменитые формулы, содержащие зависимость длин отрезков и угловых мер. Первая из них называется теоремой косинусов. Соответствующая формула имеет вид:

c 2 = a 2 + b 2 — 2*a*b*cos©.

Здесь величины a, b, c — это длины, C — угол напротив стороны c. Формула позволяет вычислить третью сторону по известным двум другим и углу между ними. Однако, возможности выражения шире, с его помощью можно посчитать всякий внутренний угол фигуры, если известны три ее стороны.

Зависимость между элементами треугольника

Следующая по счету, но не по важности теорема синусов. Ее математическое выражение записывается так:

a/sin (A) = b/sin (B) = c/sin©.

Эти равенства говорят о том, что отношение стороны к синусу противоположного ей угла является постоянной характеристикой конкретного треугольника. Зная связь двух углов и стороны или двух отрезков и одного угла можно рассчитать все остальные характеристики фигуры. Следует запомнить, что для любого рассматриваемого типа многоугольников однозначное вычисление всех его свойств требует знания минимум трех элементов (кроме трех углов).

Прямоугольный треугольник

Зависимость между элементами треугольника

Этот особый случай следует рассмотреть подробнее. Каждый школьник знает знаменитую теорему, позволяющую сравнить соответствие отрезков друг другу в этом типе фигуры. Она гласит, что сумма квадратов катетов соответствует квадрату гипотенузы, и называется пифагоровой теоремой, то есть можно записать:

Работать с прямоугольными треугольниками удобно по одной простой причине: через их геометрические параметры вводятся в математику тригонометрические функции. Последние легко использовать при вычислении сторон и углов фигуры. Например, если фигура является не только прямоугольной, но и равнобедренной, то ее катеты равны, а углы напротив них составляют по 45 °. При этом любой из катетов всегда в 2 0,5 раза меньше гипотенузы:

sin (45 °) = a/c = ½ 0,5 .

Это соотношение можно получить также из теоремы Пифагора.

Другая ситуация, когда один из острых углов равен 30 °. Для лежащего напротив него катета a можно записать следующее выражение:

Иными словами, лежащий против 30 ° катет составляет ровно половину длины гипотенузы.

Таким образом, в любом треугольнике существует прямая пропорциональность между длиной стороны и противолежащим ей углом. Для количественного решения задач по геометрии с этой фигурой следует пользоваться выражениями синусов, косинусов и теоремой Пифагора.

Видео:Соотношения между сторонами и углами треугольника. 7 класс.Скачать

Соотношения между сторонами и углами треугольника. 7 класс.

Треугольник. Числовые зависимости между элементами треугольника (сторон, высот, медиан).

Теорема.

Если стороны прямоугольного треугольника измерены одной единицей, то квадрат числа, выражающего гипотенузу равен сумме квадратов чисел, выражающих катеты.

Эту теорему обыкновенно выражают сокращенно так:

Квадрат гипотенузы равен сумме квадратов катетов.

Это соотношение было впервые замечено греческим геометром Пифагором (VI в. до н.э.) и носит поэтому его имя — теорема Пифагора.

В треугольнике квадрат стороны, лежащей против острого угла, равен сумме квадратов двух других сторон без удвоенного произведения какой-нибудь из этих сторон на ее отрезок от вершины острого угла до высоты.

Зависимость между элементами треугольника

Пусть BС — сторона треугольника ABС (черт. 1 и черт. 2), лежащая против острого угла A , и BD — высота опущенная на какую-либо из остальных сторон, например, на AС (или на ее продолжение).Требуется доказать, что:

Из прямоугольных треугольников BDС и ABD выводим:

Подставив в равенство [1] вместо BD 2 и DС 2 их выражения из равенств [2] и [3] , получим:

Это равенство, после сокращения членов -AD 2 и +AD 2 , и есть то самое, которое требовалось доказать.

Замечание. Доказанная теорема остается верной и тогда, когда угол С прямой. Тогда отрезок СD обратится в ноль, т.е. AС станет равна AD, и мы будем иметь:

Что согласуется с теоремой о квадрате гипотенузы.

Теорема.

В треугольнике квадрат стороны, лежащей против тупого угла, равен сумме квадратов двух других сторон, сложенных с удвоенным произведением какой-нибудь из этих сторон на отрезок ее продолжения от вершины тупого угла до высоты. Доказательство аналогично предыдущему.

Следствие.

Из трех последних теорем выводим, что квадрат стороны треугольника равен, меньше или больше суммы квадратов других сторон, смотря по тому, будет ли противолежащий угол прямой, острый или тупой.

Отсюда следует обратное предложение: Угол треугольника окажется прямым, острым или тупым, смотря по тому, будет ли квадрат противолежащей стороны равен, меньше или больше суммы квадратов других сторон.

Видео:9 класс, 15 урок, Решение треугольниковСкачать

9 класс, 15 урок, Решение треугольников

Вычисление высоты треугольника по его сторонам.

Зависимость между элементами треугольника

Обозначим высоту, опущенную на сторону а треугольника ABС , через ha. Чтобы вычислить ее, предварительно из уравнения:

находим отрезок основания с’:

Зависимость между элементами треугольника.

После чего из DABD определяем высоту, как катет:

Зависимость между элементами треугольника.

Таким же путем можно определить высоты hb и hс , опущенные на стороны b и с.

Видео:Треугольник и его элементыСкачать

Треугольник и его элементы

Вычисление медиан треугольника по его сторонам.

Пусть даны стороны треугольника ABС и требуется вычислить его медиану BD. Для этого продолжим ее на расстояние DE = BD и точку E соединим с A и С. Тогда получим параллелограмм ABCE.

Тогда Зависимость между элементами треугольника.

Видео:Геометрия 7 класс (Урок№9 - Треугольник.)Скачать

Геометрия 7 класс (Урок№9 - Треугольник.)

Треугольник. Формулы и свойства треугольников.

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Типы треугольников

По величине углов

Зависимость между элементами треугольника

Зависимость между элементами треугольника

Зависимость между элементами треугольника

По числу равных сторон

Зависимость между элементами треугольника

Зависимость между элементами треугольника

Зависимость между элементами треугольника

Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Зависимость между элементами треугольника

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c= 2R
sin αsin βsin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 bc · cos α

b 2 = a 2 + c 2 — 2 ac · cos β

c 2 = a 2 + b 2 — 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Видео:Сумма углов треугольника. Геометрия 7 класс | МатематикаСкачать

Сумма углов треугольника. Геометрия 7 класс | Математика

Медианы треугольника

Зависимость между элементами треугольника

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 — a 2

mb = 1 2 √ 2 a 2 +2 c 2 — b 2

mc = 1 2 √ 2 a 2 +2 b 2 — c 2

Видео:7 класс, 15 урок, Первый признак равенства треугольниковСкачать

7 класс, 15 урок, Первый признак равенства треугольников

Биссектрисы треугольника

Зависимость между элементами треугольника

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p — a ) b + c

lb = 2√ acp ( p — b ) a + c

lc = 2√ abp ( p — c ) a + b

где p = a + b + c 2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Видео:Соотношения между сторонами и углами треугольника. Урок 10. Геометрия 9 классСкачать

Соотношения между сторонами и углами треугольника. Урок 10. Геометрия 9 класс

Высоты треугольника

Зависимость между элементами треугольника

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Видео:Треугольники. 7 класс.Скачать

Треугольники. 7 класс.

Окружность вписанная в треугольник

Зависимость между элементами треугольника

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Окружность описанная вокруг треугольника

Зависимость между элементами треугольника

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Видео:7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Связь между вписанной и описанной окружностями треугольника

Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Средняя линия треугольника

Свойства средней линии треугольника

Зависимость между элементами треугольника

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Видео:Признаки равенства треугольников. 7 класс.Скачать

Признаки равенства треугольников. 7 класс.

Периметр треугольника

Зависимость между элементами треугольника

Периметр треугольника ∆ ABC равен сумме длин его сторон

Видео:9 класс, 12 урок, Теорема о площади треугольникаСкачать

9 класс, 12 урок, Теорема о площади треугольника

Формулы площади треугольника

Зависимость между элементами треугольника

Формула Герона

S =a · b · с
4R

Видео:7 класс, 33 урок, Теорема о соотношениях между сторонами и углами треугольникаСкачать

7 класс, 33 урок, Теорема о соотношениях между сторонами и углами треугольника

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Видео:33. Соотношения между сторонами и углами треугольникаСкачать

33. Соотношения между сторонами и углами треугольника

Подобие треугольников

Зависимость между элементами треугольника

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

📸 Видео

Соотношения между сторонами и углами треугольника. Практическая часть. 7 класс.Скачать

Соотношения между сторонами и углами треугольника. Практическая часть. 7 класс.
Поделиться или сохранить к себе: