1. мПДЛБ ДЧЙЦЕФУС РПРЕТЕЛ ФЕЮЕОЙС ТЕЛЙ У УПВУФЧЕООПК УЛПТПУФША 4 ЛН/ЮБУ. уЛПТПУФШ ФЕЮЕОЙС ТЕЛЙ 1 ЛН/ЮБУ. пРТЕДЕМЙФЕ УХННБТОХА УЛПТПУФШ МПДЛЙ ПФОПУЙФЕМШОП ъЕНМЙ.
2. уЛПТПУФШ МПДЛЙ, ДЧЙЦХЭЕКУС РПРЕТЕЛ ФЕЮЕОЙС ТЕЛЙ 5 ЛН/ЮБУ. пРТЕДЕМЙФЕ УЛПТПУФШ МПДЛЙ Ч УФПСЮЕК ЧПДЕ, ЕУМЙ УЛПТПУФШ ФЕЮЕОЙС ТЕЛЙ 2 ЛН/ЮБУ.
лТБФЛБС ФЕПТЙС:
уЛПТПУФШ — ЧЕМЙЮЙОБ ЧЕЛФПТОБС. пОБ РПДЮЙОСЕФУС ЪБЛПОБН, РТЙОСФЩН ДМС ЧЕЛФПТПЧ.
уМПЦЕОЙЕ. рХУФШ ОБН ОБДП ОБКФЙ УХННХ ДЧХИ ЧЕЛФПТПЧ УЛПТПУФЙ, ТБУРПМПЦЕООЩИ РПД ОЕЛПФПТЩН ХЗМПН ДТХЗ Л ДТХЗХ. фПЗДБ ОБДП РХФЕН РБТБММЕМШОПЗП РЕТЕОПУБ РПНЕУФЙФШ ОБЮБМП ЧЕЛФПТБ ЧФПТПК УЛПТПУФЙ Ч ЛПОЕГ ЧЕЛФПТБ РЕТЧПК УЛПТПУФЙ Й РПУФТПЙФШ ОПЧЩК ЧЕЛФПТ, УПЕДЙОЙЧ ОБЮБМП РЕТЧПЗП ЧЕЛФПТБ У ЛПОГПН ЧФПТПЗП: ПФ РЕТЧПЗП ЛП ЧФПТПНХ. рПМХЮЕООЩК ЧЕЛФПТ Й ВХДЕФ УХННБТОПК УЛПТПУФША.
чЩЮЙФБОЙЕ. рХУФШ ОБН ОБДП ОБКФЙ ТБЪОПУФШ ДЧХИ ЧЕЛФПТПЧ УЛПТПУФЙ, ТБУРПМПЦЕООЩИ РПД ОЕЛПФПТЩН ХЗМПН ДТХЗ Л ДТХЗХ. фПЗДБ ОБДП РХФЕН РБТБММЕМШОПЗП РЕТЕОПУБ РПНЕУФЙФШ ОБЮБМП ЧЕЛФПТБ ЧФПТПК УЛПТПУФЙ Ч ОБЮБМП ЧЕЛФПТБ РЕТЧПК УЛПТПУФЙ Й РПУФТПЙФШ ОПЧЩК ЧЕЛФПТ, УПЕДЙОЙЧ ЛПОЕГ ЧФПТПЗП ЧЕЛФПТБ У ЛПОГПН РЕТЧПЗП: ПФ ЧФПТПЗП Л РЕТЧПНХ. рПМХЮЕООЩК ЧЕЛФПТ Й ВХДЕФ ТБЪОПУФША ДЧХИ УЛПТПУФЕК.
тБЪМПЦЕОЙЕ ОБ УПУФБЧМСАЭЙЕ. мАВПК ЧЕЛФПТ УЛПТПУФЙ НПЦОП ТБЪМПЦЙФШ ОБ УПУФБЧМСАЭЙЕ, ФП ЕУФШ ОБКФЙ ДЧБ ФБЛЙИ ЧЕЛФПТБ УЛПТПУФЙ, ЛПФПТЩЕ Ч УХННЕ ДБАФ ЙУИПДОЩК. еУМЙ ОЕ ПРТЕДЕМЕОП ОЙ ПДОПК ИБТБЛФЕТЙУФЙЛЙ УПУФБЧМСАЭЙИ ЧЕЛФПТПЧ, ФП ФБЛЙИ ТБЪМПЦЕОЙК УХЭЕУФЧХЕФ ВЕУЛПОЕЮОП НОПЗП, ЕУМЙ ПРТЕДЕМЕО ИПФС ВЩ ПДЙО ЧЕЛФПТ (ДМЙОБ, ОБРТБЧМЕОЙЕ) ЙМЙ РП ПДОПК ИБТБЛФЕТЙУФЙЛЕ ЛБЦДПЗП ЧЕЛФПТБ, ФП ФБЛПЕ ТБЪМПЦЕОЙЕ УФБОПЧЙФУС ЕДЙОУФЧЕООЩН.
рТПЕЛГЙЙ ЧЕЛФПТБ УЛПТПУФЙ ОБ ЛППТДЙОБФОЩЕ ПУЙ. юФПВЩ ОБКФЙ РТПЕЛГЙА ЧЕЛФПТБ УЛПТПУФЙ ОБ ЛППТДЙОБФОХА ПУШ, ОБДП ЙЪ ОБЮБМБ Й ЛПОГБ ЧЕЛФПТБ ПРХУФЙФШ РЕТРЕОДЙЛХМСТЩ ОБ ЛППТДЙОБФОХА ПУШ. дМЙОБ ПФТЕЪЛБ ОБ ЛППТДЙОБФОПК ПУЙ, ЪБЛМАЮЕООПЗП НЕЦДХ ПУОПЧБОЙСНЙ РЕТРЕОДЙЛХМСТПЧ — ЬФП РТПЕЛГЙС. уБНБ РТПЕЛГЙС ОБРТБЧМЕОЙС ОЕ ЙНЕЕФ, ЬФП УЛБМСТОБС ЧЕМЙЮЙОБ. пОБ ЙНЕЕФ ЪОБЛ. рПМПЦЙФЕМШОЩК, ЕУМЙ РТПЕЛГЙС ЛПОГБ ЧЕЛФПТБ УПЧРБДБЕФ У РПМПЦЙФЕМШОЩН ОБРТБЧМЕОЙЕН ПУЙ Й ПФТЙГБФЕМШОЩК, ЕУМЙ ОБПВПТПФ.
жПТНХМЩ ДМС ТЕЫЕОЙС:
ч РТПУФЩИ УМХЮБСИ, ЛПЗДБ ЧЕЛФПТБ УЛПТПУФЙ ПВТБЪХАФ РТСНПХЗПМШОЩК ФТЕХЗПМШОЙЛ, ЙУРПМШЪХЕФУС ЙЪЧЕУФОПЕ УППФОПЫЕОЙЕ
еУМЙ ФТЕХЗПМШОЙЛ РТПЙЪЧПМШОЩК, ФП ЙУРПМШЪХЕФУС ФЕПТЕНБ ЛПУЙОХУПЧ.
бМЗПТЙФН ТЕЫЕОЙС ФЙРПЧПК ЪБДБЮЙ:
1. лТБФЛП ЪБРЙУБФШ ХУМПЧЙЕ ЪБДБЮЙ.
2. йЪПВТБЪЙФШ ХУМПЧЙЕ ЗЕПНЕФТЙЮЕУЛЙ Ч ПУСИ ЛППТДЙОБФ, ТБУРПМПЦЙЧ ЧЕЛФПТБ Ч УППФЧЕФУФЧЙЙ У ЧПРТПУПН ЪБДБЮЙ.
3 . рПУФТПЙФШ ЗЕПНЕФТЙЮЕУЛЙ ЧЕЛФПТ ЙУЛПНПК УЛПТПУФЙ ЙМЙ ЕЕ РТПЕЛГЙЙ.
4. рТПЧЕУФЙ БОБМЙФЙЮЕУЛЙК ТБУЮЕФ.
5. ъБРЙУБФШ ПФЧЕФ.
чПЪНПЦОЩЕ ПУПВЕООПУФЙ ЪБДБЮ:
йОПЗДБ НПЦЕФ РПФТЕВПЧБФШУС ОБКФЙ ОЕ ДЧЕ, Б ОЕУЛПМШЛП УПУФБЧМСАЭЙИ ЧЕЛФПТБ. рТЙОГЙР ПУФБЕФУС РТЕЦОЙН: УХННБ УПУФБЧМСАЭЙИ ДПМЦОБ ВЩФШ ТБЧОБ ЬФПНХ ЧЕЛФПТХ.
рТЙНЕТЩ ТЕЫЕОЙС:
ъБДБЮБ 1.
мПДЛБ ДЧЙЦЕФУС РПРЕТЕЛ ФЕЮЕОЙС ТЕЛЙ У УПВУФЧЕООПК УЛПТПУФША 4 ЛН/ЮБУ. уЛПТПУФШ ФЕЮЕОЙС ТЕЛЙ 1 ЛН/ЮБУ. пРТЕДЕМЙФЕ УХННБТОХА УЛПТПУФШ МПДЛЙ ПФОПУЙФЕМШОП ъЕНМЙ.
1. лТБФЛП ЪБРЙУЩЧБЕН ХУМПЧЙЕ ЪБДБЮЙ.
2. йЪПВТБЦБЕН ХУМПЧЙЕ ЗЕПНЕФТЙЮЕУЛЙ Ч ПУСИ ЛППТДЙОБФ Й УФТПЙН ЗЕПНЕФТЙЮЕУЛЙ ЧЕЛФПТ ЙУЛПНПК УЛПТПУФЙ.
3. рТПЧПДЙН БОБМЙФЙЮЕУЛЙК ТБУЮЕФ .
4. ъБРЙУЩЧБЕН ПФЧЕФ.
пФЧЕФ: уХННБТОБС УЛПТПУФШ МПДЛЙ ПФОПУЙФЕМШОП ъЕНМЙ 4,13 ЛН/ЮБУ, ОБРТБЧМЕОБ РП ХЗМПН 77 ЗТБДХУПЧ Л ОБРТБЧМЕОЙА ФЕЮЕОЙС.
ъБДБЮБ 2.
уЛПТПУФШ МПДЛЙ, ДЧЙЦХЭЕКУС РПРЕТЕЛ ФЕЮЕОЙС ТЕЛЙ 5 ЛН/ЮБУ. пРТЕДЕМЙФЕ УЛПТПУФШ МПДЛЙ Ч УФПСЮЕК ЧПДЕ, ЕУМЙ УЛПТПУФШ ФЕЮЕОЙС ТЕЛЙ 2 ЛН/ЮБУ.
1. лТБФЛП ЪБРЙУЩЧБЕН ХУМПЧЙЕ ЪБДБЮЙ.
2. йЪПВТБЦБЕН ХУМПЧЙЕ ЗЕПНЕФТЙЮЕУЛЙ Ч ПУСИ ЛППТДЙОБФ. уФТПЙН ЗЕПНЕФТЙЮЕУЛЙ ЧЕЛФПТБ, УПУФБЧМСАЭЙЕ УЛПТПУФЙ МПДЛЙ, ПДОБ ЙЪ ЛПФПТЩИ — ЙУЛПНБС УЛПТПУФШ Ч УФПСЮЕК ЧПДЕ.
3. рТПЧПДЙН БОБМЙФЙЮЕУЛЙК ТБУЮЕФ.
4. ъБРЙУЩЧБЕН ПФЧЕФ.
пФЧЕФ: уЛПТПУФШ МПДЛЙ Ч УФПСЮЕК ЧПДЕ 4,6 ЛН/ЮБУ.
Видео:Найдите разложение вектора по векторам (базису)Скачать
Скорость, Вектор скорости и траектория, Сложение скоростей
Скорость
Средняя скорость частицы характеризует быстроту ее движения за конечный промежуток времени. Неограниченно уменьшая этот промежуток, мы придем к физической величине, характеризующей быстроту движения в данный момент времени. Такая величина называется мгновенной скоростью или просто скоростью:
обозначает математическую операцию перехода к пределу. Под этим символом записывается условие, при котором выполняется данный предельный переход; в рассматриваемом случае это стремление к нулю промежутка времени. При вычислении скорости по этому правилу мы убедимся, что уменьшение промежутка времени приводит к тому, что на некотором этапе получаемые очередные значения средней скорости будут все меньше и меньше отличаться друг от друга. Поэтому на практике при нахождении скорости можно остановиться на конечном значении, достаточно малом для получения требуемой точности значения скорости.
Вектор скорости и траектория.
Рассматриваемый предельный переход имеет ясный геометрический смысл. Поскольку вектор перемещения направлен по хорде, соединяющей две точки траектории, то при сближении этих точек, происходящем при, он принимает положение, соответствующее касательной к траектории в данной точке. Это значит, что вектор скорости направлен по касательной к траектории. Так будет в любой точке траектории (рис. 14). При прямолинейной траектории движения вектор скорости направлен вдоль этой прямой.
Скорость прохождения пути.
Аналогичным переходом определяется мгновенная скорость прохождения пути:
Для плавной кривой, каковой является траектория любого непрерывного механического движения, длина дуги тем меньше отличается от длины стягивающей ее хорды, чем короче эта дуга. В пределе эти длины совпадают. Поэтому при можно считать, что . Это означает, что скорость прохождения пути равна модулю мгновенной скорости . Движение, при котором модуль скорости остается неизменным, называется равномерным. В случае прямолинейной траектории при равномерном движении вектор скорости постоянен, а в случае криволинейной траектории изменяется только его направление.
Сложение скоростей.
Если тело одновременно участвует в нескольких движениях, то его скорость равна векторной сумме скоростей каждого из этих движений. Это непосредственно следует из правила сложения перемещений: так как , то после деления на получаем
Иногда бывает удобно представить некоторое сложное движение как суперпозицию, т. е. наложение двух простых движений. В этом случае равенство (3) можно трактовать как правило разложения вектора скорости на составляющие.
По этой ссылке вы найдёте полный курс лекций по математике:
Задачи.
1.
Переправа через реку. Скорость течения в реке с параллельными берегами всюду одинакова и равна. Ширина реки (рис. 15). Катер может плыть со скоростью относительно воды. На какое расстояние s снесет катер вниз по течению реки, если при переправе нос катера направить строго поперек берегов?
Катер участвует одновременно в двух движениях: со скоростью , направленной поперек течения, и вместе с водой со скоростью которая направлена параллельно берегу. В соответствии с правилом сложения скоростей полная скорость катера относительно берегов равна векторной сумме (рис. 16). Очевидно, что движение катера происходит по прямой, направленной вдоль вектора. Искомое расстояние s, на которое снесет катер при переправе, можно найти из подобия треугольника, образованному векторами скоростей:
Эту задачу легко решить и не прибегая к сложению векторов скоростей.
Очевидно, что расстояние s равно произведению скорости течения на время в течение которого катер пересекает реку. Это время можно найти, разделив ширину реки на скорость движения катера поперек реки. Таким образом, находим Рис. 16. Сложение скоростей при переправе через .В этой простой задаче второй способ решения предпочтительнее, так как он проще. Однако уже при небольшом усложнении условия задачи становятся отчетливо видны преимущества первого способа, основанного на сложении векторов скоростей.
2. Переправа поперек реки. Предположим, что теперь нам нужно переправиться на катере через ту же реку точно поперек, т. е. попасть в точку В, лежащую напротив начальной точки А (рис. 17). Как нужно направить нос катера при переправе? Сколько времени займет такая переправа?Решение. В рассматриваемом случае полная скорость v катера относительно берегов, равная векторной сумме скоростей должна быть направлена поперек реки.
Из рис. 17 сразу видно, что вектор, вдоль которого и смотрит нос катера, должен отклоняться на некоторый угол а вверх по течению реки от направления . Синус этого угла равен отношению модулей скоростей течения и катера относительно воды. Переправа поперек реки без сноса возможна только в том случае, когда скорость катера относительно воды больше скорости течения. Это сразу видно либо из треугольника скоростей на рис. 17 (гипотенуза всегда больше катета), либо из формулы (синус угла а должен быть меньше единицы).Время переправы найдем, разделив ширину реки на полную скорость катера по теореме Пифагора.
Возможно вам будут полезны данные страницы:
3. Снос при быстром течении.
Предположим теперь, что скорость катера относительно воды меньше скорости течения: В таком случае переправа без сноса невозможна. Как следует направить нос катера при переправе, чтобы снос получился минимальным? На какое расстояние этом снесет катер? Решение. Полная скорость относительно берегов во всех рассматриваемых случаях дается формулой. Однако теперь нагляднее выполнить сложение векторов и по правилу треугольника (рис. 18) первым изображаем век гор для которого мы знаем модуль направление, а затем к его концу пристраиваем начало вектора известен только модуль, направление еще предстоит выбрать. Этот выбор нужно сделать так, вектор результирующей скорости как можно меньше отклонялся от направления поперек реки.
Рис. 19. Определение курса (направление вектора) переправы минимальным сносом 18. Сложение скоростей переправе Конец любом направлении должен лежать на окружности радиуса центр которой совпадает концом вектора. Эта окружность показана Так условию задачи то точка соответствующая началу лежит вне этой окружности.
Из рисунка видно, что образует прямой |
наименьший угол тогда, когда он направлен касательной Следовательно, перпендикулярен вектору треугольник прямоугольный. Таким образом, направлять вверх течению под углом линии Синус этого угла дастся выражением Траектория направлена вдоль вектора, т.е. она перпендикулярна направлению, в котором смотрит катера. Это значит, своей траектории катер движется боком. другом берегу реки причалит точке, до найти из подобия треугольников. Модуль находится теореме Пифагора. результате получаем
4. Лодка тросе. Лодку подтягивают за привязанный носу трос, наматывая равномерно вращающийся барабан Барабан установлен высоком берегу. какой скоростью лодка тот момент, трос горизонтом? Трос выбирается барабаном скоростью.
Решение.
Точка троса, где он привязан к лодке, движется с той же скоростью, что и лодка. Эта скорость v направлена горизонтально. Чтобы связать ее со скоростью выбирания троса, нужно сообразить, что движение троса сводится к повороту вокруг точки В, где он касается барабана, и скольжению вдоль собственного направления, т. е. прямой . Поэтому естественно разложить скорость точки на две составляющие , направленные вдоль и поперек троса (рис. 21). Скорость , направленная поперек, связана с поворотом троса. Модуль скорости направленной вдоль троса, — это и есть данное в условии задачи значение скорости.
По мере приближения лодки к берегу угол а становится больше. Это значит, что cos а убывает и искомая скорость возрастает. Задача для самостоятельного решения Человек находится в поле на расстоянии от прямолинейного участка шоссе. Слева от себя он замечает движущийся по шоссе автомобиль. В каком направлении следует бежать к шоссе, чтобы выбежать на дорогу впереди автомобиля и как можно дальше от него? Скорость автомобиля и, скорость человека.
• Объясните, почему вектор скорости всегда направлен по касательной к траектории.
• В некоторых случаях траектория движения частицы может иметь изломы. Приведите примеры таких движений. Что можно сказать о направлении скорости в точках, где траектория имеет излом?
• В случае непрерывного механического движения вектор скорости не испытывает скачков ни по модулю, ни по направлению. Появление скачков скорости всегда связано с некоторой идеализацией реального процесса. Какие идеализации присутствовали в приведенных вами примерах траекторий с изломами?
• Найдите ошибку в приводимом ниже решении задачи 4. Разложим скорость , точки троса на вертикальную и горизонтальную составляющие (рис. 22). Горизонтальная составляющая это и есть искомая скорость лодки. Поэтому и (неверно!).
Скорость как производная.
Вернемся к выражению (1) для мгновенной скорости. При движении частицы ее радиус-вектор г изменяется, т. е. является некоторой функцией времени:. Перемещение Дг за промежуток времени At представляет собой разность радиусов-векторов в моменты времени. Поэтому формулу (1) можно переписать в виде В математике такую величину называют производной от функции по времени Для нее используют следующие обозначения. Последнее обозначение (точка над буквой) характерно именно для производной по времени. Отметим, что в данном случае производная представляет собой вектор, так как получается в результате дифференцирования векторной функции по скалярному аргументу. Для модуля мгновенной скорости в соответствии справедливо выражение в начале статьи.
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
Видео:Разложение вектора по базису. 9 класс.Скачать
Разложение вектора
Разложение вектора а на составляющие — операция замены вектора а несколькими другими векторами аь а2, а3 и т. д., которые при их сложении образуют начальный вектор а; в этом случае векторы db а2, а3 и т. д. называются составляющими вектора а. Иными словами, разложение любого вектора на составляющие — действие, обратное сложению векторов.
Из рис. 1.5 следует, что сумма векторов ах и ау равна начальному вектору а, т. е. d = ах + ау; здесь ах и ау являются составляющими вектора ау вдоль осей Ох и Оу соответственно.
Проекция вектора d на ось Ох — длина вектора ах (величина алгебраическая), взятая со знаком «минус» или «плюс». Аналогично вводится понятие проекций вектора d на заданную координатную ось Оу.
При нахождении проекций вектора а предварительно находят его составляющие ах и ау по осям; если составляющая (ах, ау) совпадает с положительным направлением оси, проекцию берут со знаком «плюс», если же нет, то со знаком «минус». Величина проекций определяются по формулам
где а — модуль вектора ау; а и р — углы между положительным направлением соответствующей оси и вектора ау (рис. 1.5).
Длина (модуль) вектора а равна а = ^а 2 х + а 2 у, а угол а равен а = arctg ау/ах. Следует отметить, что составляющая вектора есть вектор, проекция вектора — число, которое может принимать положительное или отрицательное значения.
📺 Видео
РАЗЛОЖЕНИЕ ВЕКТОРА НА СОСТАВЛЯЮЩИЕСкачать
Разложение вектора по векторамСкачать
Физика | Ликбез по векторамСкачать
Урок 9. Проекции вектора на координатные осиСкачать
9 класс, 1 урок, Разложение вектора по двум неколлинеарным векторамСкачать
#вектор Разложение вектора по ортам. Направляющие косинусыСкачать
Рассмотрение темы: "Тангенциальное, нормальное и полное ускорение"Скачать
Разложение силы на составляющиеСкачать
Урок 8. Векторные величины. Действия над векторами.Скачать
Построение проекции вектора на осьСкачать
Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
1.24. РАЗЛОЖЕНИЕ ВЕКТОРА НА СОСТАВЛЯЮЩИЕ (ПРОЕКЦИЯ). ЛАНДСБЕРГ.Скачать
Физика: Понятие Вектор, Вектор СкоростиСкачать
Как разложить вектор по базису - bezbotvyСкачать
89. Разложение вектора по двум неколлинеарным векторамСкачать
Разложение силы на составляющиеСкачать
Разложение вектора по векторам (базису). Аналитическая геометрия-1Скачать
Векторы и действия над ними, проекция вектора на координатные оси. 9 класс.Скачать