Разложение вектора на два других

Разложение вектора по базису

В данной публикации мы рассмотрим, каким образом можно разложить вектор по двум базисным векторам, а также разберем пример решения задачи по этой теме.

Видео:РАЗЛОЖЕНИЕ ВЕКТОРА ПО ДВУМ неколлинеарным ВЕКТОРАМ 9 классСкачать

РАЗЛОЖЕНИЕ ВЕКТОРА ПО ДВУМ неколлинеарным ВЕКТОРАМ 9 класс

Принцип разложения вектора

Для того, чтобы разложить вектор b по базисным векторам , требуется определить такие коэффициенты , при которых линейная комбинация векторов равняется вектору b , то есть:

Видео:Найдите разложение вектора по векторам (базису)Скачать

Найдите разложение вектора по векторам (базису)

Пример задачи

Разложим вектор по двум базисным векторам и .

Решение:

1. Векторное уравнение выглядит так:

Разложение вектора на два других

3. Теперь нужно решить систему. Из второго уравнения получаем:
.

Подставляем полученное выражение в первое уравнение:
2 · (1 + 3y) + y = 16
2 + 6y + y = 16
7y = 14
y = 2

Следовательно, x = 1 + 3y = 1 + 2 · 2 = 7 .

Видео:9 класс, 1 урок, Разложение вектора по двум неколлинеарным векторамСкачать

9 класс, 1 урок, Разложение вектора по двум неколлинеарным векторам

Разложение вектора по векторам

Чтобы разложить, вектор b по базисным векторам a 1, . an , необходимо найти коэффициенты x 1, . xn , при которых линейная комбинация векторов a 1, . an равна вектору b :

при этом коэффициенты x 1, . xn , называются координатами вектора b в базисе a 1, . an .

Видео:89. Разложение вектора по двум неколлинеарным векторамСкачать

89. Разложение вектора по двум неколлинеарным векторам

Пример задачи на разложение вектора по базисным векторам

Решение: Составим векторное уравнение:

которое можно записать в виде системы линейных уравнений

Видео:Разложение вектора по базису. 9 класс.Скачать

Разложение вектора по базису. 9 класс.

Векторное произведение векторов

Разложение вектора на два других

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Видео:10 класс, 45 урок, Разложение вектора по трем некомпланарным векторамСкачать

10 класс, 45 урок, Разложение вектора по трем некомпланарным векторам

Определение векторного произведения

Система координат — способ определить положение и перемещение точки или тела с помощью чисел или других символов.

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Как найти координаты точки мы рассказали в этой статье.

Скаляр — это величина, которая полностью определяется в любой координатной системе одним числом или функцией.

Вектор — направленный отрезок прямой, для которого указано, какая точка является началом, а какая — концом.

Разложение вектора на два других

Вектор с началом в точке A и концом в точке B принято обозначать как →AB. Векторы также можно обозначать малыми латинскими буквами со стрелкой или черточкой над ними, вот так: →a.

Коллинеарность — отношение параллельности векторов. Два ненулевых вектора называются коллинеарными, если они лежат на параллельных прямых или на одной прямой.

Проще говоря это «параллельные» векторы. Коллинеарные векторы могут быть одинаково направлены или противоположно направлены. Основное обозначение — →a || →b. Сонаправленные коллинеарные векторы обозначаются так →a ↑↑ →b, противоположно направленные — →a ↑↓ →b.

Прежде чем дать определение векторного произведения, разберемся с ориентацией упорядоченной тройки векторов →a, →b, →c в трехмерном пространстве.

Отложим векторы →a, →b, →c от одной точки. В зависимости от направления вектора →c тройка →a, →b, →c может быть правой или левой.

Посмотрим с конца вектора →c на то, как происходит кратчайший поворот от вектора →a к →b. Если кратчайший поворот происходит против часовой стрелки, то тройка векторов →a, →b, →c называется правой, по часовой стрелке — левой.

Разложение вектора на два других

Теперь возьмем два неколлинеарных вектора →a и →b. Отложим от точки А векторы →AB = →a и →AC = →b. Построим некоторый вектор →AD = →c, перпендикулярный одновременно и →AB и →AC.

Очевидно, что при построении вектора →AD = →c мы можем поступить по-разному, если зададим ему либо одно направление, либо противоположное.

Разложение вектора на два других

В зависимости от направления вектора →AD = →c упорядоченная тройка векторов →a, →b, →c может быть правой или левой.

И сейчас мы подошли к определению векторного произведения. Оно дается для двух векторов, которые заданы в прямоугольной системе координат трехмерного пространства.

Еще не устали от теории? Онлайн-школа Skysmart предлагает обучение на курсах по математике — много практики и поддержка внимательных преподавателей!

Векторным произведением двух векторов →a и →b, которые заданы в прямоугольной системе координат трехмерного пространства, называется такой вектор →c, что:

  • он является нулевым, если векторы →a и →b коллинеарны;
  • он перпендикулярен и вектору →a и вектору →b;
    Разложение вектора на два других
  • длина векторного произведения равна произведению длин векторов →a и →b на синус угла между ними
    Разложение вектора на два других
  • тройка векторов →a, →b, →c ориентирована так же, как и заданная система координат.

Векторным произведением вектора →a на вектор →b называется вектор →c, длина которого численно равна площади параллелограмма построенного на векторах →a и →b, перпендикулярный к плоскости этих векторов и направленный так, чтобы наименьшее вращение от →a к →b вокруг вектора c осуществлялось против часовой стрелки, если смотреть с конца вектора →c.

Разложение вектора на два других

Векторное произведение двух векторов a = и b = в декартовой системе координат — это вектор, значение которого можно вычислить, используя формулы вычисления векторного произведения векторов:

  • Разложение вектора на два других
  • Разложение вектора на два других

Векторное произведение векторов →a и →b обозначается как [→a • →b].

Другое определение связано с правой рукой человека, откуда и есть название. На рисунке тройка векторов →a, →b, [→a • →b] является правой.

Разложение вектора на два других

Еще есть аналитический способ определения правой и левой тройки векторов — он требует задания в рассматриваемом пространстве правой или левой системы координат, причём не обязательно прямоугольной и ортонормированной.

Нужно составить матрицу, первой строкой которой будут координаты вектора →a, второй — вектора →b, третьей — вектора →c. Затем, в зависимости от знака определителя этой матрицы, можно сделать следующие выводы:

  • Если определитель положителен, то тройка векторов имеет ту же ориентацию, что и система координат.
  • Если определитель отрицателен, то тройка векторов имеет ориентацию, противоположную ориентации системы координат.
  • Если определитель равен нулю, то векторы компланарны (линейно зависимы).

Видео:Разложение вектора по двум неколлинеарным векторам. Урок 4. Геометрия 9 классСкачать

Разложение вектора по двум неколлинеарным векторам. Урок 4. Геометрия 9 класс

Координаты векторного произведения

Рассмотрим векторное произведение векторов в координатах.

Сформулируем второе определение векторного произведения, которое позволяет находить его координаты по координатам заданных векторов.

В прямоугольной системе координат трехмерного пространства векторное произведение двух векторов →a = (ax, ay, az) и →b = (bx, by, bz) есть вектор

Разложение вектора на два других

→i, →j, →k — координатные векторы.

Это определение показывает нам векторное произведение в координатной форме.

Векторное произведение удобно представлять в виде определителя квадратной матрицы третьего порядка, первая строка которой есть орты →i, →j, →k, во второй строке находятся координаты вектора →a, а в третьей — координаты вектора →b в заданной прямоугольной системе координат:

Разложение вектора на два других

Если разложим этот определитель по элементам первой строки, то получим равенство из определения векторного произведения в координатах:

Разложение вектора на два других

Важно отметить, что координатная форма векторного произведения согласуется с определением,которое мы дали в первом пункте этой статьи. Более того, эти два определения векторного произведения эквивалентны.

Видео:Разложение вектора по векторам (базису). Аналитическая геометрия-1Скачать

Разложение вектора по векторам (базису). Аналитическая геометрия-1

Свойства векторного произведения

Векторное произведение в координатах представляется в виде определителя матрицы:

Разложение вектора на два других

На основании свойств определителя можно легко обосновать свойства векторного произведения векторов:

  1. Антикоммутативность
    Разложение вектора на два других
  2. Свойство дистрибутивности
    Разложение вектора на два других

Разложение вектора на два других
Сочетательное свойство
Разложение вектора на два других

Разложение вектора на два других

, где λ произвольное действительное число.

Для большей ясности докажем свойство антикоммутативности векторного произведения.

Разложение вектора на два других

Разложение вектора на два других

Нам известно, что значение определителя матрицы изменяется на противоположное, если переставить местами две строки, поэтому

Разложение вектора на два других

что доказывает свойство антикоммутативности векторного произведения.

Чтобы найти модуль векторного произведения векторов u и v нужно найти площадь параллелограмма, который построен на данных векторах: S = | u × v | = | u | * | v | * sinθ, где θ — угол между векторами.

Векторное произведение векторов u и v равно нулевому вектору, если u и v параллельны (коллинеарны): u × v = 0, если u ∥ v (θ = 0).

Видео:Разложение вектора по двум неколлинеарным векторам | Геометрия 7-9 класс #85 | ИнфоурокСкачать

Разложение  вектора по двум неколлинеарным векторам | Геометрия 7-9 класс #85 | Инфоурок

Примеры решения задач

Пример 1

а) Найти длину векторного произведения векторов →a и →b, если |→a| = 2, |→b| = 3, ∠(→a, →b) = π/3.

б) Найти площадь параллелограмма, построенного на векторах →a и →b, если |→a| = 2, |→b| = 3, ∠(→a, →b) = π/3.

а) По условию требуется найти длину векторного произведения. Подставляем данные в формулу:

Разложение вектора на два других

Разложение вектора на два других

Так как в задаче речь идет о длине, то в ответе указываем размерность — единицы.

б) По условию требуется найти площадь параллелограмма, который построен на векторах →a и →b. Площадь такого параллелограмма численно равна длине векторного произведения:

Разложение вектора на два других

Разложение вектора на два других

Пример 2

Найти |[-3→a x 2→b]|, если |→a| = 1/2, |→b| = 1/6, ∠(→a, →b) = π/2.

По условию снова нужно найти длину векторного произведения. Используем нашу формулу:

Разложение вектора на два других

Согласно ассоциативным законам, выносим константы за переделы векторного произведения.

Выносим константу за пределы модуля, при этом модуль позволяет убрать знак минус. Длина же не может быть отрицательной.

Разложение вектора на два других

Пример 3

Даны вершины треугольника A (0, 2, 0), B (-2, 5,0), C (-2, 2, 6). Найти его площадь.

Сначала найдём векторы:

Разложение вектора на два других

Затем векторное произведение:

Разложение вектора на два других

Вычислим его длину:

Разложение вектора на два других

Подставим данные в формулы площадей параллелограмма и треугольника:

Разложение вектора на два других

Разложение вектора на два других

Видео:Разложение вектора по двум неколлинеарным векторам - 1 часть. Геометрия 9Скачать

Разложение вектора по двум неколлинеарным векторам - 1 часть. Геометрия 9

Геометрический смысл векторного произведения

По определению длина векторного произведения векторов равна

Разложение вектора на два других

А из курса геометрии средней школы мы знаем, что площадь треугольника равна половине произведения длин двух сторон треугольника на синус угла между ними.

Поэтому длина векторного произведения равна удвоенной площади треугольника, имеющего сторонами векторы →a и →b, если их отложить от одной точки. Проще говоря, длина векторного произведения векторов →a и →b равна площади параллелограмма со сторонами |→a| и |→b| и углом между ними, равным (→a, →b). В этом состоит геометрический смысл векторного произведения.

Разложение вектора на два других

Видео:Разложение вектора по 2 неколлинеарным векторам - bezbotvyСкачать

Разложение вектора по 2 неколлинеарным векторам - bezbotvy

Физический смысл векторного произведения

В механике — одном из разделов физики — благодаря векторному произведению можно определить момент силы относительно точки пространства. Поэтому сформулируем еще одно важное определение.

Под моментом силы →F, приложенной к точке B, относительно точки A понимается следующее векторное произведение [→A B × →F].

Разложение вектора на два других

Вектор линейной скорости →V точки M колеса равен векторному произведению вектора угловой скорости →W и радиус-вектора точки колеса, то есть →V = →W`→rM.

🔥 Видео

РАЗЛОЖЕНИЕ ВЕКТОРА по трем векторамСкачать

РАЗЛОЖЕНИЕ ВЕКТОРА по трем векторам

Геометрия 9 класс (Урок№7 - Разложение вектора по двум неколлинеарным векторам. Координаты вектора.)Скачать

Геометрия 9 класс (Урок№7 - Разложение вектора по двум неколлинеарным векторам. Координаты вектора.)

Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Выразить векторы. Разложить векторы. Задачи по рисункам. ГеометрияСкачать

Выразить векторы. Разложить векторы. Задачи по рисункам. Геометрия

Как разложить вектор по базису - bezbotvyСкачать

Как разложить вектор по базису - bezbotvy

Разложение вектора по двум неколлинеарным векторам. Координаты вектораСкачать

Разложение вектора по двум неколлинеарным векторам. Координаты вектора

Разложение вектора по векторамСкачать

Разложение вектора по векторам

Базис. Разложение вектора по базису.Скачать

Базис. Разложение вектора по базису.

Коллинеарные векторы. Разложение вектора по двум неколлинеарным | МатематикаСкачать

Коллинеарные векторы. Разложение вектора по двум неколлинеарным | Математика
Поделиться или сохранить к себе: