С помощю этого онлайн калькулятора можно найти радиус вписанной в любой треугольник окружности, в том числе радиус вписанной в равносторонний треугольник окружности. Для нахождения радиуса вписанной в треугольник окружности выберите тип треугольника, введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.
| Открыть онлайн калькулятор | 
- 1. Радиус вписанной в равносторонний треугольник окружности, если известна сторона треугольника
- 2. Радиус вписанной в равносторонний треугольник окружности, если известна высота треугольника
- 3. Радиус вписанной в равносторонний треугольник окружности, если известна площадь треугольника
- Радиус вписанной окружности в равносторонний треугольник
- Треугольник вписанный в окружность
- Определение
- Формулы
- Радиус вписанной окружности в треугольник
- Радиус описанной окружности около треугольника
- Площадь треугольника
- Периметр треугольника
- Сторона треугольника
- Средняя линия треугольника
- Высота треугольника
- Свойства
- Доказательство
- 📺 Видео
Видео:Задание 16 ОГЭ по математике. Окружность вписана в равносторонний треугольник.Скачать

1. Радиус вписанной в равносторонний треугольник окружности, если известна сторона треугольника
Пусть известна сторона a равностороннего треугольника (Рис.1). Выведем формулу вычисления радиуса вписанной в треугольник окружности.
|  | 
Радиус вписанной в равнобедренный треугольник окружности через основание a и боковую сторону b вычисляется из следующей формулы:
|  | (1) | 
Учитывая, что у равностороннего треугольника все стороны равны (( small a=b )), имеем:
| ( small r=frac cdot sqrt<frac> ) ( small =frac cdot sqrt<frac> ) ( small =frac<large 2 cdot sqrt> ) | 
| ( small r=frac<large 2 cdot sqrt> ) | (2) | 
или, умножив числитель и знаменатель на ( small sqrt ):
| ( small r=frac<large sqrt> cdot a ) | (3) | 
Пример 1. Известна сторона a=17 равностороннего треугольника. Найти радиус окружности вписанной в треугольник.
Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся одним из формул (2) и (3). Подставим значения ( small a=17 ) в (3):
|  | 
Ответ: 
Видео:Окружность вписана в равносторонний треугольник, найти радиусСкачать

2. Радиус вписанной в равносторонний треугольник окружности, если известна высота треугольника
Пусть известна высота h равностороннего треугольника (Рис.2). Выведем формулу радиуса вписанной в треугольник окружности.
|  | 
Выведем формулу стороны равностороннего треугольника через высоту. Из Теоремы Пифагора имеем:
| ( small h^2+left( frac right) ^2=a^2.) | 
| ( small h^2+ frac =a^2; ; ) ( small fraca^2 =h^2; ; ) ( small a^2=frac.) | 
| ( small a= frac<large sqrt> .) | (4) | 
Формула радиуса вписанной в равнобедренный треугольник окружности по основанию и высоте вычисляется из формулы
| ( small r= large frac<a+sqrt> ) | (5) | 
Подставляя (4) в (5), получим:
| ( small r= large frac<frac<large sqrt>><frac<large sqrt>+sqrt<frac+4h^2>> ) ( small = large frac<frac<large sqrt>><frac<large sqrt>+sqrt<frac>> ) ( small = large frac<frac<large sqrt>><frac<large sqrt>+frac<large sqrt>> ) ( small = large fracsmall =large frac small cdot h ) | 
То есть, радиус вписанной в равносторонний треугольник окружности по высоте вычисляется из формулы:
| ( small r = large frac small cdot h ) | (6) | 
Пример 2. Известна высота ( small h=39 ) равностороннего треугольника. Найти радиус окружности вписанной в треугольник.
Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся формулой (6). Подставим значение ( small h=39 ) в (6):
|  | 
Ответ: 
Видео:ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэСкачать

3. Радиус вписанной в равносторонний треугольник окружности, если известна площадь треугольника
Пусть известна площадь S равностороннего треугольника (Рис.3). Найдем формулу радиуса вписанной в треугольник окружности.
|  | 
Площадь равностороннего треугольника по радиусу вписанной окружности вычисляется из следующей формулы:
| ( small S= 3cdot sqrtr^2.) | 
| ( small r^2= large frac | 
| ( small r= large frac <sqrt[4]> small cdot sqrt | (7) | 
Пример 3. Известна площадь равностороннего треугольника: ( small S=42 . ) Найти радиус окружности вписанной в треугольник.
Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся формулой (7). Подставим значение ( small S=42 ) в (7):
|  | 
Ответ: 
Видео:Равносторонний треугольник в окружностиСкачать

Радиус вписанной окружности в равносторонний треугольник
a — сторона треугольника
r — радиус вписанной окружности
Формула для радиуса вписанной окружности в равносторонний треугольник ( r ):
Калькулятор — вычислить, найти радиус вписанной окружности в равносторонний треугольник
Видео:Задача 6 №27909 ЕГЭ по математике. Урок 129Скачать

Треугольник вписанный в окружность
Видео:№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружностиСкачать

Определение
Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.
На рисунке 1 изображена окружность, описанная около 
треугольника и окружность, вписанная в треугольник.
ВD = FC = AE — диаметры описанной около треугольника окружности.
O — центр вписанной в треугольник окружности.
 
Видео:Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

Формулы
Радиус вписанной окружности в треугольник
r — радиус вписанной окружности.
- Радиус вписанной окружности в треугольник, 
 если известна площадь и все стороны:
 Радиус вписанной окружности в треугольник, 
если известны площадь и периметр:
 Радиус вписанной окружности в треугольник, 
если известны полупериметр и все стороны: 
Радиус описанной окружности около треугольника
R — радиус описанной окружности.
- Радиус описанной окружности около треугольника, 
 если известна одна из сторон и синус противолежащего стороне угла:
 Радиус описанной окружности около треугольника, 
если известны все стороны и площадь: 
 Радиус описанной окружности около треугольника, 
если известны все стороны и полупериметр:
Площадь треугольника
S — площадь треугольника.
- Площадь треугольника вписанного в окружность, 
 если известен полупериметр и радиус вписанной окружности:
 Площадь треугольника вписанного в окружность, 
если известен полупериметр:
 Площадь треугольника вписанного в окружность, 
если известен высота и основание:
 Площадь треугольника вписанного в окружность, 
если известна сторона и два прилежащих к ней угла:
 Площадь треугольника вписанного в окружность, 
если известны две стороны и синус угла между ними:
[ S = fracab cdot sin angle C ]
Периметр треугольника
P — периметр треугольника.
- Периметр треугольника вписанного в окружность, 
 если известны все стороны:
 Периметр треугольника вписанного в окружность, 
если известна площадь и радиус вписанной окружности: 
 Периметр треугольника вписанного в окружность, 
если известны две стороны и угол между ними:
Сторона треугольника
a — сторона треугольника.
- Сторона треугольника вписанного в окружность, 
 если известны две стороны и косинус угла между ними:
 Сторона треугольника вписанного в 
окружность, если известна сторона и два угла: 
Средняя линия треугольника
l — средняя линия треугольника.
- Средняя линия треугольника вписанного 
 в окружность, если известно основание:
 Средняя линия треугольника вписанного в окружность, 
если известныдве стороны, ни одна из них не является 
основанием, и косинус угламежду ними: 
Высота треугольника
h — высота треугольника.
- Высота треугольника вписанного в окружность, 
 если известна площадь и основание:
 Высота треугольника вписанного в окружность, 
если известен сторона и синус угла прилежащего 
к этой стороне, и находящегося напротив высоты:
[ h = b cdot sin alpha ]
 Высота треугольника вписанного в окружность, 
если известен радиус описанной окружности и 
две стороны, ни одна из которых не является основанием:
Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Свойства
- Центр вписанной в треугольник окружности 
 находится на пересечении биссектрис.
- В треугольник, вписанный в окружность, 
 можно вписать окружность, причем только одну.
- Для треугольника, вписанного в окружность, 
 справедлива Теорема Синусов, Теорема Косинусов
 и Теорема Пифагора.
- Центр описанной около треугольника окружности 
 находится на пересечении серединных перпендикуляров.
- Все вершины треугольника, вписанного 
 в окружность, лежат на окружности.
- Сумма всех углов треугольника — 180 градусов.
- Площадь треугольника вокруг которого описана окружность, и 
 треугольника, в который вписана окружность, можно найти по
 формуле Герона.
Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Доказательство
Около любого треугольника, можно
описать окружность притом только одну.
 
окружность и треугольник, 
которые изображены на рисунке 2.
окружность описана 
около треугольника.
- Проведем серединные 
 перпендикуляры — HO, FO, EO.
- O — точка пересечения серединных 
 перпендикуляров равноудалена от
 всех вершин треугольника.
- Центр окружности — точка пересечения 
 серединных перпендикуляров — около
 треугольника описана окружность — O,
 от центра окружности к вершинам можно
 провести равные отрезки — радиусы — OB, OA, OC.
окружность описана около треугольника, 
что и требовалось доказать.
Подводя итог, можно сказать, что треугольник,
вписанный в окружность — это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.
📺 Видео
15 задание треугольники огэ по математике / маттаймСкачать

Задача 6 №27910 ЕГЭ по математике. Урок 130Скачать

Равносторонний треугольник вписан в окружность. Найти площадь меньшего сегмента.Скачать

Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

ОГЭ 2020 задание 17Скачать

Вписанная и описанная окружность - от bezbotvyСкачать

Как разделить окружность на 3 равные части или как вписать равнобедренный треугольник в окружностьСкачать

Задание 16 ОГЭ по математике. Окружность описана около равностороннего треугольника. Задача 2Скачать

Построение равностронего треугольника.Скачать

2065 радиус окружности вписанной в правильный треугольник равен 29 Найдите высоту этого треугольникаСкачать

№693. В прямоугольный треугольник вписана окружность радиуса r. Найдите периметр треугольника,Скачать








