Равносторонний треугольник в координатах

Равносторонний треугольник в координатах

Ключевые слова: треугольник, сторона, угол, окружность вписанная, описанная

Треугольник — простейший многоугольник, имеющий 3 вершины и 3 стороны; часть плоскости, ограниченная тремя точками, не лежащими на одной прямой, и тремя отрезками, попарно соединяющими эти точки.

Вершины треугольника обычно обозначаются заглавными латинскими буквами (A, B, C), величины углов при соответственных вершинах — греческими буквами ($$alpha, beta, gamma$$), а длины противоположных сторон — прописными латинскими буквами (a, b, c).

Правильный треугольник или равносторонний треугольник — правильный многоугольник с тремя сторонами. Все стороны равны между собой, и все углы равны 60° (или $$frac$$).

Равносторонний треугольник в координатах

Пусть t — сторона правильного треугольника, R — радиус описанной окружности, r — радиус вписанной окружности.

  • Радиус вписанной окружности правильного треугольника, выраженный через его сторону $$r = frac<sqrt>cdot t$$.
  • Радиус описанной окружности правильного треугольника, выраженный через его сторону $$R = frac<sqrt>cdot t$$.
  • Периметр правильного треугольника равен $$P = 3t = 3 sqrtR = 6sqrtr$$.
  • Высота правильного треугольника: $$h = frac<sqrt>t$$.
  • Площадь правильного треугольника рассчитывается по формулам: $$S = frac<sqrt>t^ = frac<3sqrt>R^ = 3 sqrtr^$$.

Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

Найти третью точку правильного треугольника?

Равносторонний треугольник в координатах

Логика у вас правильная — взять середину отрезка AB и отложить от него перпендикуляр длинной sqrt(3)/2*d.

Но не надо искать углы, вектор перпендикуляр находится тривиально — это (Можно доказать перпендикулярность через скалярное произведение, например). Более того, длина этого вектора будет уже d (это ведь повернутый на 90 градусов вектор по стороне треугольника). Значит его остается тупо домножить на sqrt(3)/2.

Таким образом формула x3 = (x1+x2)/2 +sqrt(3)/2*(y2-y1).

Зная координаты точки 1(x1,y1) и координаты точки 2(x2,y2) найти третью точку(x3,y3) правильного треугольника со стороной d.

Безграмотная формулировка. Не точки, а вершины. d вообще лишнее.

Если A(x1,y1), B(x2,y2), то третья вершина C(x3,y3) находится поворотом вершины B вокруг A на 60 градусов по часовой и против часовой стрелки.

Видео:Формулы равностороннего треугольника #shortsСкачать

Формулы равностороннего треугольника #shorts

Координаты равностороннего треугольника вписанного в окружность

Видео:Геометрия Равносторонний треугольникСкачать

Геометрия  Равносторонний треугольник

Треугольник вписанный в окружность

Равносторонний треугольник в координатах

Видео:Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ

Определение

Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.

На рисунке 1 изображена окружность, описанная около
треугольника
и окружность, вписанная в треугольник.

ВD = FC = AE — диаметры описанной около треугольника окружности.

O — центр вписанной в треугольник окружности.

Равносторонний треугольник в координатах

Видео:9 класс, 4 урок, Простейшие задачи в координатахСкачать

9 класс, 4 урок, Простейшие задачи в координатах

Формулы

Радиус вписанной окружности в треугольник

r — радиус вписанной окружности.

  1. Радиус вписанной окружности в треугольник,
    если известна площадь и все стороны:

Радиус вписанной окружности в треугольник,
если известны площадь и периметр:

Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:

Радиус описанной окружности около треугольника

R — радиус описанной окружности.

  1. Радиус описанной окружности около треугольника,
    если известна одна из сторон и синус противолежащего стороне угла:

Радиус описанной окружности около треугольника,
если известны все стороны и площадь:

Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:

Площадь треугольника

S — площадь треугольника.

  1. Площадь треугольника вписанного в окружность,
    если известен полупериметр и радиус вписанной окружности:

Площадь треугольника вписанного в окружность,
если известен полупериметр:

Площадь треугольника вписанного в окружность,
если известен высота и основание:

Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:

Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:

[ S = frac ab cdot sin angle C ]

Периметр треугольника

P — периметр треугольника.

  1. Периметр треугольника вписанного в окружность,
    если известны все стороны:

Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:

Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:

Сторона треугольника

a — сторона треугольника.

  1. Сторона треугольника вписанного в окружность,
    если известны две стороны и косинус угла между ними:

Сторона треугольника вписанного в
окружность, если известна сторона и два угла:

Средняя линия треугольника

l — средняя линия треугольника.

  1. Средняя линия треугольника вписанного
    в окружность, если известно основание:

Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:

Высота треугольника

h — высота треугольника.

  1. Высота треугольника вписанного в окружность,
    если известна площадь и основание:

Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:

[ h = b cdot sin alpha ]

Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:

Видео:Как построить равнобедренный или равносторонний треугольник по клеткам.Скачать

Как построить равнобедренный или равносторонний треугольник по клеткам.

Свойства

  • Центр вписанной в треугольник окружности
    находится на пересечении биссектрис.
  • В треугольник, вписанный в окружность,
    можно вписать окружность, причем только одну.
  • Для треугольника, вписанного в окружность,
    справедлива Теорема Синусов, Теорема Косинусов
    и Теорема Пифагора.
  • Центр описанной около треугольника окружности
    находится на пересечении серединных перпендикуляров.
  • Все вершины треугольника, вписанного
    в окружность, лежат на окружности.
  • Сумма всех углов треугольника — 180 градусов.
  • Площадь треугольника вокруг которого описана окружность, и
    треугольника, в который вписана окружность, можно найти по
    формуле Герона.

Видео:Уравнения стороны треугольника и медианыСкачать

Уравнения стороны треугольника и медианы

Доказательство

Около любого треугольника, можно
описать окружность притом только одну.

Равносторонний треугольник в координатах

окружность и треугольник,
которые изображены на рисунке 2.

окружность описана
около треугольника.

  1. Проведем серединные
    перпендикуляры — HO, FO, EO.
  2. O — точка пересечения серединных
    перпендикуляров равноудалена от
    всех вершин треугольника.
  3. Центр окружности — точка пересечения
    серединных перпендикуляров — около
    треугольника описана окружность — O,
    от центра окружности к вершинам можно
    провести равные отрезки — радиусы — OB, OA, OC.

окружность описана около треугольника,
что и требовалось доказать.

Подводя итог, можно сказать, что треугольник,
вписанный в окружность
— это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.

Видео:Как построить точки в системе координат OXYZСкачать

Как построить точки в системе координат OXYZ

Координаты равностороннего треугольника вписанного в окружность

Ключевые слова: треугольник, сторона, угол, окружность вписанная, описанная

Равносторонний треугольник в координатах

Треугольник — простейший многоугольник, имеющий 3 вершины и 3 стороны; часть плоскости, ограниченная тремя точками, не лежащими на одной прямой, и тремя отрезками, попарно соединяющими эти точки.

Вершины треугольника обычно обозначаются заглавными латинскими буквами (A, B, C), величины углов при соответственных вершинах — греческими буквами ($$alpha, beta, gamma$$), а длины противоположных сторон — прописными латинскими буквами (a, b, c).

Правильный треугольник или равносторонний треугольник — правильный многоугольник с тремя сторонами. Все стороны равны между собой, и все углы равны 60° (или $$frac $$).

Равносторонний треугольник в координатах

Пусть t — сторона правильного треугольника, R — радиус описанной окружности, r — радиус вписанной окружности.

  • Радиус вписанной окружности правильного треугольника, выраженный через его сторону $$r = frac > cdot t$$.
  • Радиус описанной окружности правильного треугольника, выраженный через его сторону $$R = frac > cdot t$$.
  • Периметр правильного треугольника равен $$P = 3t = 3 sqrt R = 6sqrt r$$.
  • Высота правильного треугольника: $$h = frac > t$$.
  • Площадь правильного треугольника рассчитывается по формулам: $$S = frac > t^ = frac > R^ = 3 sqrt r^ $$.

Видео:Построение равнобедренного треугольникаСкачать

Построение равнобедренного треугольника

Свойства равностороннего треугольника: теория и пример задачи

В данной статье мы рассмотрим определение и свойства равностороннего (правильного) треугольника. Также разберем пример решения задачи для закрепления теоретического материала.

Видео:Известна биссектриса равностороннего треугольника. Найти сторону этого треугольника. ОГЭ №16Скачать

Известна биссектриса равностороннего треугольника. Найти сторону этого треугольника. ОГЭ №16

Определение равностороннего треугольника

Равносторонним (или правильным) называется треугольник, в котором все стороны имеют одинаковую длину. Т.е. AB = BC = AC.

Равносторонний треугольник в координатах

Примечание: правильный многоугольник – это выпуклый многоугольник, имеющий равные стороны и углы между ними.

Видео:ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, Котангенс

Свойства равностороннего треугольника

Свойство 1

В равностороннем треугольнике все углы равны 60°. Т.е. α = β = γ = 60°.

Равносторонний треугольник в координатах

Свойство 2

В равностороннем треугольнике высота, проведенная к любой из сторон, одновременно является биссектрисой угла, из которого она проведена, а также медианой и серединным перпендикуляром.

Равносторонний треугольник в координатах

CD – медиана, высота и серединный перпендикуляр к стороне AB, а также биссектриса угла ACB.

Свойство 3

В равностороннем треугольнике биссектрисы, медианы, высоты и серединные перпендикуляры, проведенные ко всем сторонам, пересекаются в одной точке.

Равносторонний треугольник в координатах

Свойство 4

Центры вписанной и описанной вокруг равностороннего треугольника окружностей совпадают и находятся на пересечении медиан, высот, биссектрис и серединных перпендикуляров.

Равносторонний треугольник в координатах

Свойство 5

Радиус описанной вокруг равностороннего треугольника окружности в 2 раза больше радиуса вписанной окружности.

Равносторонний треугольник в координатах

  • R – радиус описанной окружности;
  • r – радиус вписанной окружности;
  • R = 2r.

Свойство 6

В равностороннем треугольнике, зная длину стороны (условно примем ее за “a”), можно вычислить:

1. Высоту/медиану/биссектрису:
Равносторонний треугольник в координатах

2. Радиус вписанной окружности:
Равносторонний треугольник в координатах

3. Радиус описанной окружности:
Равносторонний треугольник в координатах

4. Периметр:
Равносторонний треугольник в координатах

5. Площадь:
Равносторонний треугольник в координатах

Видео:Задание 15 ОГЭ. Медиана равностороннего треугольникаСкачать

Задание 15 ОГЭ. Медиана равностороннего треугольника

Пример задачи

Дан равносторонний треугольник, сторона которого равна 7 см. Найдите радиус описанной вокруг и вписанной окружности, а также, высоту фигуры.

Решение
Применим формулы, приведеные выше, для нахождения неизвестных величин:

📸 Видео

Задача, которую боятсяСкачать

Задача, которую боятся

Геометрия - Построение правильного треугольникаСкачать

Геометрия - Построение правильного треугольника

7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника

ПРОЕКЦИИ РАВНОСТОРОННЕГО ТРЕУГОЛЛЬНИКА НА П1/П2 и углы наклона его плоскости к плоскостям проекцийСкачать

ПРОЕКЦИИ РАВНОСТОРОННЕГО ТРЕУГОЛЛЬНИКА НА П1/П2 и углы наклона его плоскости к плоскостям проекций

ПОСТРОИТЬ ПРОЕКЦИИ РАВНОСТОРОННЕГО ТРЕУГОЛЬНИКА ПО ЗАДАННЫМ УСЛОВИЯМ. НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ.Скачать

ПОСТРОИТЬ ПРОЕКЦИИ РАВНОСТОРОННЕГО ТРЕУГОЛЬНИКА ПО ЗАДАННЫМ УСЛОВИЯМ. НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ.

Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Скалярное произведение векторов. 9 класс.Скачать

Скалярное произведение векторов. 9 класс.

Вычисляем высоту через координаты вершин 1Скачать

Вычисляем высоту через координаты вершин  1
Поделиться или сохранить к себе:
Равносторонний треугольник в координатах