Ключевые слова: треугольник, сторона, угол, окружность вписанная, описанная
Треугольник — простейший многоугольник, имеющий 3 вершины и 3 стороны; часть плоскости, ограниченная тремя точками, не лежащими на одной прямой, и тремя отрезками, попарно соединяющими эти точки.
Вершины треугольника обычно обозначаются заглавными латинскими буквами (A, B, C), величины углов при соответственных вершинах — греческими буквами ($$alpha, beta, gamma$$), а длины противоположных сторон — прописными латинскими буквами (a, b, c).
Правильный треугольник или равносторонний треугольник — правильный многоугольник с тремя сторонами. Все стороны равны между собой, и все углы равны 60° (или $$frac$$).
Пусть t — сторона правильного треугольника, R — радиус описанной окружности, r — радиус вписанной окружности.
- Радиус вписанной окружности правильного треугольника, выраженный через его сторону $$r = frac<sqrt>cdot t$$.
- Радиус описанной окружности правильного треугольника, выраженный через его сторону $$R = frac<sqrt>cdot t$$.
- Периметр правильного треугольника равен $$P = 3t = 3 sqrtR = 6sqrtr$$.
- Высота правильного треугольника: $$h = frac<sqrt>t$$.
- Площадь правильного треугольника рассчитывается по формулам: $$S = frac<sqrt>t^ = frac<3sqrt>R^ = 3 sqrtr^$$.
- Найти третью точку правильного треугольника?
- Координаты равностороннего треугольника вписанного в окружность
- Треугольник вписанный в окружность
- Определение
- Формулы
- Радиус вписанной окружности в треугольник
- Радиус описанной окружности около треугольника
- Площадь треугольника
- Периметр треугольника
- Сторона треугольника
- Средняя линия треугольника
- Высота треугольника
- Свойства
- Доказательство
- Координаты равностороннего треугольника вписанного в окружность
- Свойства равностороннего треугольника: теория и пример задачи
- Определение равностороннего треугольника
- Свойства равностороннего треугольника
- Свойство 1
- Свойство 2
- Свойство 3
- Свойство 4
- Свойство 5
- Свойство 6
- Пример задачи
- 📸 Видео
Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать
Найти третью точку правильного треугольника?
Логика у вас правильная — взять середину отрезка AB и отложить от него перпендикуляр длинной sqrt(3)/2*d.
Но не надо искать углы, вектор перпендикуляр находится тривиально — это (Можно доказать перпендикулярность через скалярное произведение, например). Более того, длина этого вектора будет уже d (это ведь повернутый на 90 градусов вектор по стороне треугольника). Значит его остается тупо домножить на sqrt(3)/2.
Таким образом формула x3 = (x1+x2)/2 +sqrt(3)/2*(y2-y1).
Зная координаты точки 1(x1,y1) и координаты точки 2(x2,y2) найти третью точку(x3,y3) правильного треугольника со стороной d.
Безграмотная формулировка. Не точки, а вершины. d вообще лишнее.
Если A(x1,y1), B(x2,y2), то третья вершина C(x3,y3) находится поворотом вершины B вокруг A на 60 градусов по часовой и против часовой стрелки.
Видео:Формулы равностороннего треугольника #shortsСкачать
Координаты равностороннего треугольника вписанного в окружность
Видео:Геометрия Равносторонний треугольникСкачать
Треугольник вписанный в окружность
Видео:Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать
Определение
Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.
На рисунке 1 изображена окружность, описанная около
треугольника и окружность, вписанная в треугольник.
ВD = FC = AE — диаметры описанной около треугольника окружности.
O — центр вписанной в треугольник окружности.
Видео:9 класс, 4 урок, Простейшие задачи в координатахСкачать
Формулы
Радиус вписанной окружности в треугольник
r — радиус вписанной окружности.
- Радиус вписанной окружности в треугольник,
если известна площадь и все стороны:
Радиус вписанной окружности в треугольник,
если известны площадь и периметр:
Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:
Радиус описанной окружности около треугольника
R — радиус описанной окружности.
- Радиус описанной окружности около треугольника,
если известна одна из сторон и синус противолежащего стороне угла:
Радиус описанной окружности около треугольника,
если известны все стороны и площадь:
Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:
Площадь треугольника
S — площадь треугольника.
- Площадь треугольника вписанного в окружность,
если известен полупериметр и радиус вписанной окружности:
Площадь треугольника вписанного в окружность,
если известен полупериметр:
Площадь треугольника вписанного в окружность,
если известен высота и основание:
Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:
Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:
[ S = frac ab cdot sin angle C ]
Периметр треугольника
P — периметр треугольника.
- Периметр треугольника вписанного в окружность,
если известны все стороны:
Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:
Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:
Сторона треугольника
a — сторона треугольника.
- Сторона треугольника вписанного в окружность,
если известны две стороны и косинус угла между ними:
Сторона треугольника вписанного в
окружность, если известна сторона и два угла:
Средняя линия треугольника
l — средняя линия треугольника.
- Средняя линия треугольника вписанного
в окружность, если известно основание:
Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:
Высота треугольника
h — высота треугольника.
- Высота треугольника вписанного в окружность,
если известна площадь и основание:
Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:
[ h = b cdot sin alpha ]
Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:
Видео:Как построить равнобедренный или равносторонний треугольник по клеткам.Скачать
Свойства
- Центр вписанной в треугольник окружности
находится на пересечении биссектрис. - В треугольник, вписанный в окружность,
можно вписать окружность, причем только одну. - Для треугольника, вписанного в окружность,
справедлива Теорема Синусов, Теорема Косинусов
и Теорема Пифагора. - Центр описанной около треугольника окружности
находится на пересечении серединных перпендикуляров. - Все вершины треугольника, вписанного
в окружность, лежат на окружности. - Сумма всех углов треугольника — 180 градусов.
- Площадь треугольника вокруг которого описана окружность, и
треугольника, в который вписана окружность, можно найти по
формуле Герона.
Видео:Уравнения стороны треугольника и медианыСкачать
Доказательство
Около любого треугольника, можно
описать окружность притом только одну.
окружность и треугольник,
которые изображены на рисунке 2.
окружность описана
около треугольника.
- Проведем серединные
перпендикуляры — HO, FO, EO. - O — точка пересечения серединных
перпендикуляров равноудалена от
всех вершин треугольника. - Центр окружности — точка пересечения
серединных перпендикуляров — около
треугольника описана окружность — O,
от центра окружности к вершинам можно
провести равные отрезки — радиусы — OB, OA, OC.
окружность описана около треугольника,
что и требовалось доказать.
Подводя итог, можно сказать, что треугольник,
вписанный в окружность — это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.
Видео:Как построить точки в системе координат OXYZСкачать
Координаты равностороннего треугольника вписанного в окружность
Ключевые слова: треугольник, сторона, угол, окружность вписанная, описанная
Треугольник — простейший многоугольник, имеющий 3 вершины и 3 стороны; часть плоскости, ограниченная тремя точками, не лежащими на одной прямой, и тремя отрезками, попарно соединяющими эти точки.
Вершины треугольника обычно обозначаются заглавными латинскими буквами (A, B, C), величины углов при соответственных вершинах — греческими буквами ($$alpha, beta, gamma$$), а длины противоположных сторон — прописными латинскими буквами (a, b, c).
Правильный треугольник или равносторонний треугольник — правильный многоугольник с тремя сторонами. Все стороны равны между собой, и все углы равны 60° (или $$frac $$).
Пусть t — сторона правильного треугольника, R — радиус описанной окружности, r — радиус вписанной окружности.
- Радиус вписанной окружности правильного треугольника, выраженный через его сторону $$r = frac > cdot t$$.
- Радиус описанной окружности правильного треугольника, выраженный через его сторону $$R = frac > cdot t$$.
- Периметр правильного треугольника равен $$P = 3t = 3 sqrt R = 6sqrt r$$.
- Высота правильного треугольника: $$h = frac > t$$.
- Площадь правильного треугольника рассчитывается по формулам: $$S = frac > t^ = frac > R^ = 3 sqrt r^ $$.
Видео:Построение равнобедренного треугольникаСкачать
Свойства равностороннего треугольника: теория и пример задачи
В данной статье мы рассмотрим определение и свойства равностороннего (правильного) треугольника. Также разберем пример решения задачи для закрепления теоретического материала.
Видео:Известна биссектриса равностороннего треугольника. Найти сторону этого треугольника. ОГЭ №16Скачать
Определение равностороннего треугольника
Равносторонним (или правильным) называется треугольник, в котором все стороны имеют одинаковую длину. Т.е. AB = BC = AC.
Примечание: правильный многоугольник – это выпуклый многоугольник, имеющий равные стороны и углы между ними.
Видео:ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать
Свойства равностороннего треугольника
Свойство 1
В равностороннем треугольнике все углы равны 60°. Т.е. α = β = γ = 60°.
Свойство 2
В равностороннем треугольнике высота, проведенная к любой из сторон, одновременно является биссектрисой угла, из которого она проведена, а также медианой и серединным перпендикуляром.
CD – медиана, высота и серединный перпендикуляр к стороне AB, а также биссектриса угла ACB.
Свойство 3
В равностороннем треугольнике биссектрисы, медианы, высоты и серединные перпендикуляры, проведенные ко всем сторонам, пересекаются в одной точке.
Свойство 4
Центры вписанной и описанной вокруг равностороннего треугольника окружностей совпадают и находятся на пересечении медиан, высот, биссектрис и серединных перпендикуляров.
Свойство 5
Радиус описанной вокруг равностороннего треугольника окружности в 2 раза больше радиуса вписанной окружности.
- R – радиус описанной окружности;
- r – радиус вписанной окружности;
- R = 2r.
Свойство 6
В равностороннем треугольнике, зная длину стороны (условно примем ее за “a”), можно вычислить:
1. Высоту/медиану/биссектрису:
2. Радиус вписанной окружности:
3. Радиус описанной окружности:
4. Периметр:
5. Площадь:
Видео:Задание 15 ОГЭ. Медиана равностороннего треугольникаСкачать
Пример задачи
Дан равносторонний треугольник, сторона которого равна 7 см. Найдите радиус описанной вокруг и вписанной окружности, а также, высоту фигуры.
Решение
Применим формулы, приведеные выше, для нахождения неизвестных величин:
📸 Видео
Задача, которую боятсяСкачать
Геометрия - Построение правильного треугольникаСкачать
7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать
ПРОЕКЦИИ РАВНОСТОРОННЕГО ТРЕУГОЛЛЬНИКА НА П1/П2 и углы наклона его плоскости к плоскостям проекцийСкачать
ПОСТРОИТЬ ПРОЕКЦИИ РАВНОСТОРОННЕГО ТРЕУГОЛЬНИКА ПО ЗАДАННЫМ УСЛОВИЯМ. НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ.Скачать
Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
Скалярное произведение векторов. 9 класс.Скачать
Вычисляем высоту через координаты вершин 1Скачать