В этой статье дано определение расстояния между двумя параллельными прямыми на плоскости и в трехмерном пространстве, а также разобран метод координат, позволяющий вычислять расстояние между параллельными прямыми. Сначала приведена необходимая теория, после чего приведены подробные решения примеров и задач, в которых находится расстояние между двумя параллельными прямыми.
Навигация по странице.
- Расстояние между двумя параллельными прямыми – определение.
- Нахождение расстояния между параллельными прямыми – теория, примеры, решения.
- Расстояние между двумя параллельными прямыми: определение и примеры нахождения
- Расстояние между двумя параллельными прямыми: определение
- Нахождение расстояния между параллельными прямыми
- Расстояние между двумя параллельными прямыми в пространстве
- Используемые термины и понятия
- Доказательство теоремы о расстоянии между параллельными прямыми
- Готовые работы на аналогичную тему
- Задачи на определение расстояния между параллельными прямыми в объёмном мире
- 💡 Видео
Видео:19. Расстояние между параллельными прямыми Расстояние между скрещивающимися прямымиСкачать
Расстояние между двумя параллельными прямыми – определение.
Определение расстояния между двумя параллельными прямыми дается через расстояние от точки до прямой.
Расстояние между двумя параллельными прямыми – это расстояние от произвольной точки одной из параллельных прямых до другой прямой.
Для наглядности изобразим две параллельные прямые a и b , отметим на прямой а произвольную точку М1 , опустим перпендикуляр из точки М1 на прямую b , обозначив его H1 . Отрезок М1H1 соответствует расстоянию между параллельными прямыми a и b .
Приведенное определение расстояния между двумя параллельными прямыми справедливо как для параллельных прямых на плоскости, так и для прямых в трехмерном пространстве. Более того, такое определение расстояния между двумя параллельными прямыми принято не случайно. Оно тесно связано со следующей теоремой.
Все точки одной из двух параллельных прямых удалены на одинаковое расстояние от другой прямой.
Рассмотрим параллельные прямые a и b . Отметим на прямой a точку М1 , опустим из нее перпендикуляр на прямую b . Основание этого перпендикуляра обозначим как H1 . Тогда длина перпендикуляра М1H1 есть расстояние между параллельными прямыми a и b по определению. Докажем, что равно , где М2 – произвольная точка прямой a , отличная от точки M1 , а H2 – основание перпендикуляра, проведенного из точки М2 на прямую b . Доказав этот факт, мы докажем и саму теорему.
Так как внутренние накрест лежащие углы, образованные при пересечении двух параллельных прямых секущей, равны (об этом говорилось в статье параллельные прямые, параллельность прямых), то , а прямая M2H2 , перпендикулярная прямой b по построению, перпендикулярна и прямой a . Тогда треугольники М1H1H2 и М2М1H2 прямоугольные, и, более того, они равны по гипотенузе и острому углу: М1H2 – общая гипотенуза, . Из равенства треугольников следует равенство их соответствующих сторон, поэтому, . Теорема доказана.
Следует заметить, что расстояние между двумя параллельными прямыми является наименьшим из расстояний от точек одной прямой до точек другой прямой.
Видео:7 класс, 38 урок, Расстояние от точки до прямой. Расстояние между параллельными прямымиСкачать
Нахождение расстояния между параллельными прямыми – теория, примеры, решения.
Итак, нахождение расстояния между параллельными прямыми сводится к нахождению длины перпендикуляра, проведенного из некоторой точки одной из прямых на другую прямую. При этом подбирается метод, позволяющий это расстояние отыскать. Выбор метода зависит от условий конкретной задачи. В некоторых случаях можно использовать теорему Пифагора, в других — признаки равенства или подобия треугольников, определения синуса, косинуса или тангенса угла и т.п. Если же параллельные прямые заданы в прямоугольной системе координат, то расстояние между заданными параллельными прямыми можно вычислить методом координат. На нем и остановимся.
Сформулируем условие задачи.
Пусть на плоскости или в трехмерном пространстве зафиксирована прямоугольная система координат, заданы две параллельные прямые a и b и требуется найти расстояние между этими прямыми.
Решение этой задачи строится на определении расстояния между параллельными прямыми — чтобы найти расстояние между двумя заданными параллельными прямыми нужно:
- определить координаты некоторой точки М1 , лежащей на прямой a (или на прямой b );
- вычислить расстояние от точки М1 до прямой b (или a ).
С определением координат точки М1 , лежащей на какой-нибудь из заданных параллельных прямых, проблем не возникнет, если, конечно, Вам знакомы основные виды уравнения прямой на плоскости и уравнения прямой в пространстве. Для нахождения расстояния от точки М1 до нужной из заданных параллельных прямых Вам будет полезна информация из раздела нахождение расстояния от точки до прямой.
В частности, если в прямоугольной системе координат Oxy на плоскости прямую a задает общее уравнение прямой вида , а прямую b , параллельную прямой a , — общее уравнение прямой , то расстояние между этими параллельными прямыми можно вычислить по формуле .
Покажем вывод этой формулы.
Возьмем точку , которая лежит на прямой a , тогда координаты точки М1 удовлетворяют уравнению , то есть, справедливо равенство , откуда имеем .
Если , то нормальное уравнение прямой b имеет вид , а если , то нормальное уравнение прямой b имеет вид . Тогда при расстояние от точки до прямой b вычисляется по формуле , а при — по формуле
То есть, при любом значении С2 расстояние от точки до прямой b можно вычислить по формуле . А если учесть равенство , которое было получено выше, то последняя формула примет вид . На этом вывод формулы для вычисления расстояние между двумя параллельными прямыми, заданными общими уравнениями прямых вида и завершен.
Разберем решения примеров.
Начнем с нахождения расстояния между двумя параллельными прямыми, заданными в прямоугольной системе координат Oxy на плоскости.
Найдите расстояние между параллельными прямыми и .
Очевидно, что прямая, которой соответствуют параметрические уравнения прямой на плоскости вида , проходит через точку .
Искомое расстояние между параллельными прямыми равно расстоянию от точки до прямой . Вычислим его.
Получим нормальное уравнение прямой, которой отвечает уравнение прямой с угловым коэффициентом вида . Для этого сначала запишем общее уравнение прямой: . Теперь вычислим нормирующий множитель: . Умножив на него обе части последнего уравнения, имеем нормальное уравнение прямой: . Искомое расстояние равно модулю значения выражения , вычисленного при . Итак, расстояние между заданными параллельными прямыми равно
Второй способ решения.
Получим общие уравнения заданных параллельных прямых.
Выше мы выяснили, что прямой соответствует общее уравнение прямой . Перейдем от параметрических уравнений прямой вида к общему уравнению этой прямой:
Коэффициенты при переменных x и y в полученных общих уравнениях параллельных прямых равны, поэтому мы сразу можем применить формулу для вычисления расстояния между параллельными прямыми на плоскости: .
.
На плоскости введена прямоугольная система координат Oxy и даны уравнения двух параллельных прямых и . Найдите расстояние между указанными параллельными прямыми.
Канонические уравнения прямой на плоскости вида позволяют сразу записать координаты точки М1 , лежащей на этой прямой: . Расстояние от этой точки до прямой равно искомому расстоянию между параллельными прямыми. Уравнение является нормальным уравнением прямой, следовательно, мы можем сразу вычислить расстояние от точки до прямой : .
Второй способ решения.
Общее уравнение одной из заданных параллельных прямых нам уже дано . Приведем каноническое уравнение прямой к общему уравнению прямой: . Коэффициенты при переменной x в общих уравнениях заданных параллельных прямых равны (при переменной y коэффициенты тоже равны — они равны нулю), поэтому можно применять формулу, позволяющую вычислить расстояние между заданными параллельными прямыми: .
Осталось рассмотреть пример нахождения расстояния между параллельными прямыми в трехмерном пространстве.
Найдите расстояние между двумя параллельными прямыми, которым в прямоугольной системе координат Oxyz соответствуют канонические уравнения прямой в пространстве вида и .
Очевидно, прямая проходит через точку . Вычислим расстояние от этой точки до прямой — оно даст нам искомое расстояние между параллельными прямыми.
Прямая проходит через точку . Обозначим направляющий вектор прямой как , он имеет координаты . Вычислим координаты вектора (при необходимости смотрите статью координаты вектора по координатам точек): . Найдем векторное произведение векторов и :
Теперь осталось применить формулу, позволяющую вычислить расстояние от точки до прямой в пространстве: .
расстояние между заданными параллельными прямыми равно .
Видео:Определение кратчайшего расстояние между скрещивающимися прямыми методом замены плоскостей проекцииСкачать
Расстояние между двумя параллельными прямыми: определение и примеры нахождения
В материале этой статьи разберем вопрос нахождения расстояния между двумя параллельными прямыми, в частности, при помощи метода координат. Разбор типовых примеров поможет закрепить полученные теоретические знания.
Видео:Геометрия 7 класс (Урок№26 - Расстояние от точки до прямой. Расстояние между параллельными прямыми.)Скачать
Расстояние между двумя параллельными прямыми: определение
Расстояние между двумя параллельными прямыми – это расстояние от некоторой произвольной точки одной из параллельных прямых до другой прямой.
Приведем иллюстрацию для наглядности:
На чертеже изображены две параллельные прямые a и b . Точка М 1 принадлежит прямой a , из нее опущен перпендикуляр на прямую b . Полученный отрезок М 1 Н 1 и есть расстояние между двумя параллельными прямыми a и b .
Указанное определение расстояния между двумя параллельными прямыми справедливо как на плоскости, так и для прямых в трехмерном пространстве. Кроме того, данное определение взаимосвязано со следующей теоремой.
Когда две прямые параллельны, все точки одной из них равноудалены от другой прямой.
Пусть нам заданы две параллельные прямые a и b . Зададим на прямой а точки М 1 и М 2 , опустим из них перпендикуляры на прямую b , обозначив их основания соответственно как Н 1 и Н 2 . М 1 Н 1 – это расстояние между двумя параллельными прямыми по определению, и нам необходимо доказать, что | М 1 Н 1 | = | М 2 Н 2 | .
Пусть будет также существовать некоторая секущая, которая пересекает две заданные параллельные прямые. Условие параллельности прямых, рассмотренное в соответствующей статье, дает нам право утверждать, что в данном случае внутренние накрест лежащие углы, образованные при пересечении секущей заданных прямых, являются равными: ∠ M 2 M 1 H 2 = ∠ H 1 H 2 M 1 . Прямая М 2 Н 2 перпендикулярна прямой b по построению, и, конечно, перпендикулярна прямой a . Получившиеся треугольники М 1 Н 1 Н 2 и М 2 М 1 Н 2 являются прямоугольными и равными друг другу по гипотенузе и острому углу: М 1 Н 2 – общая гипотенуза, ∠ M 2 M 1 H 2 = ∠ H 1 H 2 M 1 . Опираясь на равенство треугольников, мы можем говорить о равенстве их сторон, т.е.: | М 1 Н 1 | = | М 2 Н 2 | . Теорема доказана.
Отметим, что расстояние между двумя параллельными прямыми – наименьшее из расстояний от точек одной прямой до точек другой.
Видео:Расстояние между скрещивающимися прямыми и уравнение их общего перпендикуляра.Скачать
Нахождение расстояния между параллельными прямыми
Мы уже выяснили, что, по сути, чтобы найти расстояние между двумя параллельными прямыми, необходимо определить длину перпендикуляра, опущенного из некой точки одной прямой на другую. Способов, как это сделать, несколько. В каких-то задачах удобно воспользоваться теоремой Пифагора; другие предполагают использование признаков равенства или подобия треугольников и т.п. В случаях, когда прямые заданы в прямоугольной системе координат, возможно вычислить расстояние между двумя параллельными прямыми, используя метод координат. Рассмотрим его подробнее.
Зададим условия. Допустим, зафиксирована прямоугольная система координат, в которой заданы две параллельные прямые a и b . Необходимо определить расстояние между заданными прямыми.
Решение задачи построим на определении расстояния между параллельными прямыми: для нахождения расстояния между двумя заданными параллельными прямыми необходимо:
— найти координаты некоторой точки М 1 , принадлежащей одной из заданных прямых;
— произвести вычисление расстояния от точки М 1 до заданной прямой, которой эта точка не принадлежит.
Опираясь на навыки работы с уравнениями прямой на плоскости или в пространстве, определить координаты точки М 1 просто. При нахождении расстояния от точки М 1 до прямой пригодится материал статьи о нахождении расстояния от точки до прямой.
Вернемся к примеру. Пусть прямая a описывается общим уравнением A x + B y + C 1 = 0 , а прямая b – уравнением A x + B y + C 2 = 0 . Тогда расстояние между двумя заданными параллельными прямыми возможно вычислить, используя формулу:
M 1 H 1 = C 2 — C 1 A 2 + B 2
Выведем эту формулу.
Используем некоторую точку М 1 ( x 1 , y 1 ) , принадлежащую прямой a . В таком случае координаты точки М 1 будут удовлетворять уравнению A x 1 + B y 1 + C 1 = 0 . Таким образом, справедливым является равенство: A x 1 + B y 1 + C 1 = 0 ; из него получим: A x 1 + B y 1 = — C 1 .
Когда С 2 0 , нормальное уравнение прямой b будет иметь вид:
A A 2 + B 2 x + B A 2 + B 2 y + C 2 A 2 + B 2 = 0
При С 2 ≥ 0 нормальное уравнение прямой b будет выглядеть так:
A A 2 + B 2 x + B A 2 + B 2 y — C 2 A 2 + B 2 = 0
И тогда для случаев, когда С 2 0 , применима формула: M 1 H 1 = A A 2 + B 2 x 1 + B A 2 + B 2 y 1 + C 2 A 2 + B 2 .
А для С 2 ≥ 0 искомое расстояние определяется по формуле M 1 H 1 = — A A 2 + B 2 x 1 — B A 2 + B 2 y 1 — C 2 A 2 + B 2 = = A A 2 + B 2 x 1 + B A 2 + B 2 y 1 + C 2 A 2 + B 2
Таким образом, при любом значении числа С 2 длина отрезка | М 1 Н 1 | (от точки М 1 до прямой b ) вычисляется по формуле: M 1 H 1 = A A 2 + B 2 x 1 + B A 2 + B 2 y 1 + C 2 A 2 + B 2
Выше мы получили: A x 1 + B y 1 = — C 1 , тогда можем преобразовать формулу: M 1 H 1 = — C 1 A 2 + B 2 + C 2 A 2 + B 2 = C 2 — C 1 A 2 + B 2 . Так мы, собственно, получили формулу, указанную в алгоритме метода координат.
Разберем теорию на примерах.
Заданы две параллельные прямые y = 2 3 x — 1 и x = 4 + 3 · λ y = — 5 + 2 · λ . Необходимо определить расстояние между ними.
Решение
Исходные параметрические уравнения дают возможность задать координаты точки, через которую проходит прямая, описываемая параметрическими уравнениями. Таким образом, получаем точку М 1 ( 4 , — 5 ) . Требуемое расстояние – это расстояние между точкой М 1 ( 4 , — 5 ) до прямой y = 2 3 x — 1 , произведем его вычисление.
Заданное уравнение прямой с угловым коэффициентом y = 2 3 x — 1 преобразуем в нормальное уравнение прямой. С этой целью сначала осуществим переход к общему уравнению прямой:
y = 2 3 x — 1 ⇔ 2 3 x — y — 1 = 0 ⇔ 2 x — 3 y — 3 = 0
Вычислим нормирующий множитель: 1 2 2 + ( — 3 ) 2 = 1 13 . Умножим на него обе части последнего уравнения и, наконец, получим возможность записать нормальное уравнение прямой: 1 13 · 2 x — 3 y — 3 = 1 13 · 0 ⇔ 2 13 x — 3 13 y — 3 13 = 0 .
При x = 4 , а y = — 5 вычислим искомое расстояние как модуль значения крайнего равенства:
2 13 · 4 — 3 13 · — 5 — 3 13 = 20 13
Ответ: 20 13 .
В фиксированной прямоугольной системе координат O x y заданы две параллельные прямые, определяемые уравнениями x — 3 = 0 и x + 5 0 = y — 1 1 . Необходимо найти расстояние между заданными параллельными прямыми.
Решение
Условиями задачи определено одно общее уравнение, задаваемое одну из исходных прямых: x-3=0. Преобразуем исходное каноническое уравнение в общее: x + 5 0 = y — 1 1 ⇔ x + 5 = 0 . При переменной x коэффициенты в обоих уравнениях равны (также равны и при y – нулю), а потому имеем возможность применить формулу для нахождения расстояния между параллельными прямыми:
M 1 H 1 = C 2 — C 1 A 2 + B 2 = 5 — ( — 3 ) 1 2 + 0 2 = 8
Ответ: 8 .
Напоследок рассмотрим задачу на нахождение расстояния между двумя параллельными прямыми в трехмерном пространстве.
В прямоугольной системе координат O x y z заданы две параллельные прямые, описываемые каноническими уравнениями прямой в пространстве: x — 3 1 = y — 1 = z + 2 4 и x + 5 1 = y — 1 — 1 = z — 2 4 . Необходимо найти расстояние между этими прямыми.
Решение
Из уравнения x — 3 1 = y — 1 = z + 2 4 легко определются координаты точки, через которую проходит прямая, описываемая этим уравнением: М 1 ( 3 , 0 , — 2 ) . Произведем вычисление расстояния | М 1 Н 1 | от точки М 1 до прямой x + 5 1 = y — 1 — 1 = z — 2 4 .
Прямая x + 5 1 = y — 1 — 1 = z — 2 4 проходит через точку М 2 ( — 5 , 1 , 2 ) . Запишем направляющий вектор прямой x + 5 1 = y — 1 — 1 = z — 2 4 как b → с координатами ( 1 , — 1 , 4 ) . Определим координаты вектора M 2 M → :
M 2 M 1 → = 3 — ( — 5 , 0 — 1 , — 2 — 2 ) ⇔ M 2 M 1 → = 8 , — 1 , — 4
Вычислим векторное произведение векторов :
b → × M 2 M 1 → = i → j → k → 1 — 1 4 8 — 1 — 4 = 8 · i → + 36 · j → + 7 · k → ⇒ b → × M 2 M 1 → = ( 8 , 36 , 7 )
Применим формулу расчета расстояния от точки до прямой в пространстве:
M 1 H 1 = b → × M 2 M 1 → b → = 8 2 + 36 2 + 7 2 1 2 + ( — 1 ) 2 + 4 2 = 1409 3 2
Видео:Видеоурок "Расстояние между прямыми в пространстве"Скачать
Расстояние между двумя параллельными прямыми в пространстве
Вы будете перенаправлены на Автор24
Для наиболее полного понимания темы следует ознакомиться с основными определениями, поэтому давайте узнаем, что же такое параллельные прямые и с чем их едят, а также некоторую другую основную терминологию и теоремы, которые касаются данной темы.
Видео:Расстояние между параллельными прямымиСкачать
Используемые термины и понятия
Расстояние — это мера удалённости, используемая для характеристики местоположения двух объектов относительно друг друга.
Иногда расстояние можно измерить с помощью измерительных приборов, например, линейки или штангенциркуля, в случае поездки на автомобиле расстояние можно вычислить через измеритель скорости. Но чаще всего приходится прибегать к каким-либо вычислениям.
Параллельные прямые в пространстве — это такие прямые, которые не имеют каких-либо совместных точек и при этом лежат в одной плоскости. То есть по сути выходит, что есть два необходимых критерия для того чтобы назвать пару прямых параллельными друг другу:
1) обе такие прямые можно поместить в некую одиночную плоскость 2) 2 параллели никогда не встретятся
Не стоит путать такие прямые со скрещивающимися. Эти прямые также никогда не встречаются между собой, но рассматривая их, становится очевидно, что их нельзя расположить в одной плоскости.
Параллельные прямые можно встретить много где в окружающем нас мире: это и линии пола и потолка, и противопложные стороны поверхности стола, и стороны двери.
Расстояние между такими прямыми есть не что иное, как длина перпендикуляра, опущенного из одной точки любой из двух изучаемых прямых, на другую. Эта длина всегда будет одинаковой вне зависимости от того, из какой точки проведёна линия под прямым углом.
Докажем теорему, приведённую выше.
Видео:Параллельные прямые | Математика | TutorOnlineСкачать
Доказательство теоремы о расстоянии между параллельными прямыми
Рисунок 1. Расстояние между параллельными прямыми
Готовые работы на аналогичную тему
Рассмотрим наши прямые, про которые заранее известно, что они параллельны, назовём их $l$ и $k$.
Выберем пару рандомных точек $X$ и $Y$, возлежащих на $l$, и опустим из них под прямым углом линии на $k$.
Здесь совсем неважно, где именно вы выберете точки, главное правило — они не должны совпадать друг с другом.
Точки пересечения построенных линий с прямой $k$ назовём $A$ и $B$.
Так как наши прямые параллельны, то по условию параллельности накрест лежащие углы $XBA$ и $BXY$ при гипотенузе $XB$ получившегося прямоугольника равны между собой. Гипотенуза в данном случае является секущей к исследуемым прямым.
Собираем всё вместе о треугольниках $XBA$ и $BXY$:
- У них есть общая сторона $XB$.
- Стороны этих треугольников $XY$ и $AB$ равны между собой.
- Значения углов $XBA$ $BXY$ тоже одинаковы, а сами по себе эти углы образованы сторонами, которые также равны между собой.
Из всего вышеперечисленного следует, что $XBA$ и $BXY$ являются равными по первому признаку равенства треугольников, и следовательно, длины перпендикуляров $XA$ и $YB$ равны.
Данное соотношение будет соблюдаться для любых произвольно выбранных точек $X$ и $Y$ — то есть длины перпендикуляров, опущенных с одной параллельной прямой на другую, всегда будут равны, что и требовалось доказать.
Доказанное утверждение справедливо как для параллельных прямых, рассматриваемых в планиметрии, так и для прямых, рассматриваемых в объёмном мире, так как 2 параллельные между собой прямые всегда образуют плоскость.
Видео:Определение расстояние между параллельными прямыми (Способ замены плоскостей проекции).Скачать
Задачи на определение расстояния между параллельными прямыми в объёмном мире
Мы с вами уже немного разобрались в теме, а это значит, что пришло время для задач с нахождением расстояния между параллельными прямыми в пространстве.
Найти расстояние между параллельными прямыми $l$ и $k$.
Рисунок 2. Параллельные прямые, образующие плоскость
Рассмотрим рисунок 2. По теореме, изложенной выше, кратчайшим расстоянием между двумя этими прямыми будет длина перпендикуляра, опущенного с одной прямой на другую, поэтому опустим из точки $X$ на прямую $k$ перпендикуляр, назовём его $h$. Длина этого перпендикуляра и будет решением нашей задачи.
На практике чаще всего нет возможности использования подручных методов типа линейки из-за невозможности исполнения чертежа в масштабе 1:1, поэтому обычно нужно найти расстояние между двумя параллельными прямыми в пространстве имея на руках функции, описывающие данные прямые.
Выше мы показали, что совсем неважно, где именно выбрать точку на одной из двух параллельных прямых, из которой нужно опустить перпендикуляр.
Поэтому в случае параллельности прямых эта задача фактически есть не что иное, как поиск расстояния между точкой, лежащей на одной из этих прямых, и другой прямой.
Формула для нахождения расстояния между параллельными прямыми $d$ и $k$ в один этап в пространстве следующая:
$ρ(d, k) = frac<sqrt<begin y_2 – y_1 & z_2 — z_1\ m_1 & n_1 \ end^2 + begin x_2 – x_1 & z_2 — z_1\ l_1 & n_1 \ end^2 + begin x_2 – x_1 & y_2 – y_1\ l_1 & m_1 \ end^2>><sqrt>$
В этой формуле $x_1, y_1, z_1$ — координаты нормального вектора прямой $d$, а $l, m, n$ — направляющий вектор этой прямой, его координаты — это знаменатели из канонических уравнений прямой в пространстве; $x_2, y_2, z_2$ — это координаты нормального вектора второй прямой.
Даны уравнения двух параллельных несовпадающих прямых:
Прямая $d$ задана уравнением $frac=frac=frac$,
а её параллель $k$ уравнением $frac=frac=frac$.
Найдите длину перпендикуляра, опущенного с одной прямой на другую.
Координаты нормального вектора для прямой $k$ $$, а для прямой $d$ $$. Координаты направляющего вектора для первой прямой $$.
Подставим данные числа в обозначенную выше формулу:
Решение примера, приведённого выше, реализовано по формуле, полученной через векторное произведение, кому-то такой способ может показаться более просты, а кому-то наоборот — сложным.
Но в любом случае воспользовавшись обоими вариантами решения оба алгоритма легко можно проверить.
Алгоритм с векторным произведением рассмотрен нами ниже для этой же задачи, из него становится понятно, каким образом получена используемая выше формула.
Найдите расстояние между параллельными прямыми из задачи, изложенной выше, через векторное произведение.
В этом случае вычисление расстояния между прямыми осуществляется по формуле:
где $M_0M_1$ — вектор, соединяющий 2 произвольных точки на двух параллельных прямых
Нормальные вектора для первой и второй прямых соответственно будут $$ и $$.
Направляющий вектор для обеих прямых совпадает, его координаты $s=$
Найдём векторную разность между нормальными векторами, которая будет координатами вектора $M_0M_1$
Теперь необходимо высчитать векторное произведение вектора $overline$ на вектор $overline$:
$overline ×overline = begin i & j & k \ 4 & -3 & 6 \ 1 & 3 & 5 \ end = i begin -3 & 6\ 3 & 5 \ end + j begin 4 & 6\ 1 & 5 \ end + k begin 4 & -3\ 1 & 3 \ end = -33i + 14j + 15k = $
А сейчас пришла очередь определить длину направляющего вектора $s$:
В результате конечный ответ составит:
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 20 01 2022
💡 Видео
38. Расстояние от точки до прямой. Расстояние между параллельными прямымиСкачать
Урок 23. Расстояние между параллельными прямыми (7 класс)Скачать
№277. Расстояние между параллельными прямыми а и b равно 3 см, а между параллельными прямымиСкачать
Расстояние от точки до прямой. Расстояние между параллельными прямыми, 7 классСкачать
✓ Расстояние между скрещивающимися прямыми | ЕГЭ-2018. Задание 13. Математика | Борис ТрушинСкачать
57. Определение расстояния между двумя параллельными прямымиСкачать
Расстояние между параллельными и скрещивающимися прямыми | МатематикаСкачать
Расстояние. Математика. 6 классСкачать
Параллельные прямые. 6 класс.Скачать
Расстояние между прямыми в пространствеСкачать
Расстояние между скрещивающимися прямымиСкачать