О чем эта статья:
3 класс, 4 класс, 9 класс, 11 класс, ЕГЭ/ОГЭ
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Видео:Как найти координаты точек на тригонометрической окружностиСкачать
Понятие системы координат
Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Например, координаты вашей квартиры тоже можно записать числами — они помогут понять, где именно находится тот дом, где вы живете. С точками на плоскости та же история.
Прямоугольная система координат — это система координат, которую изобрел математик Рене Декарт, ее еще называют «декартова система координат». Она представляет собой два взаимно перпендикулярных луча с началом отсчета в точке их пересечения.
Чтобы найти координаты, нужны ориентиры, от которых будет идти отсчет. На плоскости в этой роли выступят две числовые оси.
Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.
Чертеж начинается с горизонтальной оси, которая называется осью абсцисс и обозначается латинской буквой x (икс). Записывают ось так: Ox. Положительное направление оси абсцисс обозначается стрелкой слева направо.
Затем проводят вертикальную ось, которая называется осью ординат и обозначается y (игрек). Записывают ось Oy. Положительное направление оси ординат показываем стрелкой снизу вверх.
Оси взаимно перпендикулярны, а значит угол между ними равен 90°. Точка пересечения является началом отсчета для каждой из осей и обозначается так: O. Начало координат делит оси на две части: положительную и отрицательную.
- Координатные оси — это прямые, образующие систему координат.
- Ось абсцисс Ox — горизонтальная ось.
- Ось ординат Oy — вертикальная ось.
- Координатная плоскость — плоскость, в которой находится система координат. Обозначается так: x0y.
- Единичный отрезок — величина, которая принимается за единицу при геометрических построениях. В декартовой системе координат единичный отрезок отмечается на каждой из осей. Длина отрезка показывает сколько раз единичный отрезок и его части укладываются в данном отрезке.
Оси координат делят плоскость на четыре угла — четыре координатные четверти.
У каждой из координатных четвертей есть свой номер и обозначение в виде римской цифры. Отсчет идет против часовой стрелки:
- верхний правый угол — первая четверть I;
- верхний левый угол — вторая четверть II;
- нижний левый угол — третья четверть III;
- нижний правый угол — четвертая четверть IV;
- Если обе координаты положительны, то точка находится в первой четверти координатной плоскости.
- Если координата х отрицательная, а координата у положительная, то точка находится во второй четверти.
- Если обе координаты отрицательны, то число находится в третьей четверти.
- Если координата х положительная, а координата у отрицательная, то точка лежит в четвертой четверти.
Видео:Как искать точки на тригонометрической окружности.Скачать
Определение координат точки
Каждой точке координатной плоскости соответствуют две координаты.
Точка пересечения с осью Ох называется абсциссой точки А, а с осью Оу называется ординатой точки А.
Чтобы узнать координаты точки на плоскости, нужно опустить от точки перпендикуляр на каждую ось и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра.
Координаты точки на плоскости записывают в скобках, первая по оси Ох, вторая по оси Оу.
Смотрим на график и фиксируем: A (1; 2) и B (2; 3).
Видео:10 класс, 11 урок, Числовая окружностьСкачать
Особые случаи расположения точек
В геометрии есть несколько особых случаев расположения точек. Лучше их запомнить, чтобы без запинки решать задачки. Вот они:
- Если точка лежит на оси Oy, то ее абсцисса равна 0. Например,
точка С (0, 2). - Если точка лежит на оси Ox, то ее ордината равна 0. Например,
точка F (3, 0). - Начало координат — точка O. Ее координаты равны нулю: O (0,0).
- Точки любой прямой, которая перпендикулярна оси абсцисс, имеют одинаковые абсциссы.
- Точки любой прямой, которая перпендикулярна оси ординат, имеют одинаковые ординаты.
- Если точка лежит на оси абсцисс, то ее координаты будут иметь вид: (x, 0).
- Если точка лежит на оси ординат, то ее координаты будут иметь вид: (0, y).
Видео:Найти координаты точки единичной окружности полученной при повороте точки Ро(1;0) на угол π, 450°...Скачать
Способы нахождения точки по её координатам
Чтобы узнать, как найти точку в системе координат, можно использовать один из двух способов.
Способ первый. Как определить положение точки D по её координатам (-4, 2):
- Отметить на оси Ox, точку с координатой -4, и провести через нее прямую перпендикулярную оси Ox.
- Отметить на оси Oy, точку с координатой 2, и провести через нее прямую перпендикулярную оси Oy.
- Точка пересечения перпендикуляров и есть искомая точка D. Ее абсцисса равна -4, а ордината — 2.
Способ второй. Как определить положение точки D (-4, 2):
- Сместить прямую по оси Ox влево на 4 единицы, так как у нас
перед 4 стоит знак минус. - Подняться из этой точки параллельно оси Oy вверх на 2 единицы, так как у нас перед 2 стоит знак плюс.
Чтобы легко и быстро находить координаты точек или строить точки по координатам, скачайте готовую систему координат и храните ее в учебнике:
Видео:Алгебра 10 класс Поворот точки вокруг начала координат ЛекцияСкачать
Уравнение окружности по трем точкам
Калькулятор расчета онлайн уравнения окружности по трем заданным точкам, а также нахождение координат точки центра и радиус окружности.
Уравнение окружности
r 2 = (x — h) 2 + (y — k) 2
- h,k — координаты центра Окружности
- x,y — координаты точки окружности
- r — радиус
Пример
Найдите координаты точки центра окружности, радиус и уравнение окружности, если известны координаты трех точек A (2,2), B (2,4) и C (5,5)
Решение :
Подставляем координаты точек в формулу
- (2 — h) 2 + (2 — k) 2 = r 2
- (2 — h) 2 + (4 — k) 2 = r 2
- (5 — h) 2 + (5 — k) 2 = r 2
Шаг :2
Найдем значение k упрощая 1 и 2 уравнения
- (2 — h) 2 + (2 — k) 2 = (2 — h) 2 + (4 — k) 2
- 4 — 4h + h 2 + 4 — 4k + k 2 = 4 — 4h + h 2 +16 — 8k + k 2
- 8 — 4k = 20 — 8k
- k= 3
Шаг :3
Найдем значение h упрощая уравнения 2 и 3
- (2 — h) 2 + (2 — k) 2 = (5 — h) 2 + (5 — k) 2
- 4 — 4h + h 2 + 4 — 4k + k 2 = 25 — 10h + h 2 + 25 — 10k + k 2
- 8 — 4k — 4h = 50 — 10h — 10k
- 6k + 6h = 42
Подставив значение k=3 в уравнение
Получаем координаты точки центра (h,k) = ( 4,3 )
Шаг :4
Подставим значения h,k в формулу
- r 2 = (x — h) 2 + (y — k) 2
- r 2 = (2 — 4) 2 + (2 — 3) 2
- r 2 = (-2) 2 + (-1) 2
- r 2 = 5
- r = 2.24
Шаг :5
Подставим значения h, k в уравнение окружности
(x — h) 2 + (y — k) 2
Уравнение окружности = (x — 4) 2 + (y — 3) 2
Видео:Coordinates on Circle - Координаты точек окружностиСкачать
Вычисление положения точек в окружности
У меня есть немного пустой ум на этот момент. У меня есть проблема, когда мне нужно вычислить положение точек вокруг центральной точки, предполагая, что все они равноудалены от центра и друг от друга.
количество точек является переменной, так что это DrawCirclePoints(int x) Я уверен, что есть простое решение, но для жизни меня, я просто не вижу его:)
Видео:Координаты точек на числовой окружности. Алгебра 10 класс.Скачать
11 ответов:
точка под углом тета на окружности, центр которой (x0,y0) и чей радиус r и (x0 + r cos theta, y0 + r sin theta) . Теперь выберите theta значения, равномерно расположенные между 0 и 2pi.
учитывая длину радиуса r и угол t в радианах и центре круга (h,k), вы можете вычислить координаты точки на окружности следующим образом (это псевдокод, вам придется адаптировать его к вашему языку):
вот решение с использованием C#:
пример вывода из DrawCirclePoints(8, 10, new Point(0,0)); :
используя один из приведенных выше ответов в качестве базы, вот пример Java / Android:
Я должен был сделать это в интернете, так что вот версия coffeescript @scottyab это ответ выше:
для завершения то, что вы описываете как «положение точек вокруг центральной точки(предполагая, что все они равноудалены от центра)» — это не что иное, как «полярные координаты». И вы просите способ преобразования между полярными и Декартовыми координатами, которая дается как x = r*cos(t) , y = r*sin(t) .
здесь R версия, основанная на ответе @Pirijan выше.
угол между каждой из ваших точек будет 2Pi/x таким образом, вы можете сказать, что для точек n= 0 to x-1 угол от определенной 0 точки равен 2nPi/x .
предполагая, что ваша первая точка находится в (r,0) (где r-расстояние от центральной точки), то положение относительно центральной точки будет:
на основе ответа выше от Даниила, вот мой взять с помощью Python3.
📸 Видео
Тригонометрическая окружность. Как выучить?Скачать
9 класс, 11 урок, Формулы для вычисления координат точкиСкачать
Координаты точек на числовой окружности, часть 5. Алгебра 10 класс.Скачать
10 класс, 12 урок, Числовая окружность на координатной плоскостиСкачать
Расчет угловых координат с окружности 👍Скачать
ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по МатематикеСкачать
2 Количество целых точек на окружности с центром в начале координатСкачать
9 класс, 6 урок, Уравнение окружностиСкачать
Как видеть тангенс? Тангенс угла с помощью единичного круга.Скачать
Алгебра 10 класс. 22 сентября. Числовая окружность #8 координаты точек 2Скачать
5 Координаты точки на окружностиСкачать
Всё про углы в окружности. Геометрия | МатематикаСкачать
Точки на числовой окружностиСкачать