Радиус вписанной окружности в квадрат равен 56 корней из 2

Радиус вписанной окружности в квадрат равен 56 корней из 2

Вопрос по математике:

Радиус окружности описанной около квадрата равен 56 корней из 2 найдите радиус окружности вписанной в этот квадрат

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!

Ответы и объяснения 1

Радуис описанной около квадрата окружности совпадает с половиной диагонали, радиус вписанной — с половиной стороны. Так как диагональ к стороне относится как √2 : 1, то радиус вписанной окружности равен 56√2 : √2 = 56

Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Математика.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Математика — наука о структурах, порядке и отношениях, исторически сложившаяся на основе операций подсчёта, измерения и описания формы объектов.

Видео:Задание 16 ОГЭ по математике. Две окружности одна описана около квадрата, другая вписана в него.Скачать

Задание 16 ОГЭ по математике. Две окружности одна  описана около квадрата, другая вписана в него.

Радиус вписанной окружности в квадрат равен 56 корней из 2

Задание 17. Радиус окружности, описанной около квадрата, равен 6√2. Найдите радиус окружности, вписанной в этот квадрат.

Радиус вписанной окружности в квадрат равен 56 корней из 2

Радиус описанной окружности равен половине диагонали квадрата (половина синей линии), то есть, диагональ, равна:

Радиус вписанной окружности в квадрат равен 56 корней из 2

Радиус вписанной окружности в квадрат равен 56 корней из 2

В свою очередь диагональ квадрата – это величина

Радиус вписанной окружности в квадрат равен 56 корней из 2,

где a – сторона квадрата. То есть,

Радиус вписанной окружности в квадрат равен 56 корней из 2

Радиус вписанной окружности равен половине стороны квадрата (половина красной линии на рисунке). Получаем:

Видео:Геометрия. ОГЭ по математике. Задание 16Скачать

Геометрия. ОГЭ по математике. Задание 16

Радиусы описанной и вписанной окружностей в квадрат

Видео:Сторона квадрата равна 56. Найдите радиус окружности, вписанной в этот квадрат.Скачать

Сторона квадрата равна 56. Найдите радиус окружности, вписанной в этот квадрат.

Окружность вписанная в квадрат

Чтобы формула нахождения радиуса вписанной окружности в квадрат r была правильно рассчитана, необходимо изначально вспомнить какими свойствами обладает данная фигура. Радиус вписанной окружности в квадрат равен 56 корней из 2У квадрата:

  • все углы прямые, то есть, равны 90°;
  • все стороны, как и углы, равны;
  • диагонали равны, точкой пересечения бьются строго пополам и пересекаются под углом 90°.

При этом вписанная в выпуклый многоугольник окружность обязательно касается всех его сторон. Обозначим квадрат ABCD, точку пресечения его диагоналей O. Как видно на рисунке 1, пересечение линий АС и ВD дают равнобедренный треугольник АОВ, в котором стороны АО=ОВ, углы ОАВ=АВО=45°, а угол АОВ=90°. Тогда радиусом вписанной окружности в квадрат будет не что иное, как высота ОЕ полученного равнобедренного треугольника АОВ.

Если предположить, что сторона квадрата равна у, то формула нахождения радиуса вписанной окружности в квадрат будет выглядеть следующим образом:

Радиус вписанной окружности в квадрат равен 56 корней из 2

Объяснение: в равнобедренном треугольнике АОВ высота ОЕ или радиус r делят основание АВ пополам (свойства), образовывая при этом прямоугольный треугольник с прямым угол ОЕВ. В маленьком треугольнике ЕВО основание ОВ образует со сторонами ОЕ и ЕВ углы по 45°. Значит треугольник ЕВО еще и равнобедренный. Стороны ОЕ и ЕВ равны.

Видео:Задание 16 ОГЭ по математике. Окружность описана около квадратаСкачать

Задание 16 ОГЭ по математике. Окружность описана около квадрата

Окружность описанная около квадрата

Радиус вписанной окружности в квадрат равен 56 корней из 2Вокруг квадрата также можно описать окружность. В этом случае каждая вершина фигуры будет касаться окружности. Следующая формула нахождения радиуса описанной окружности около квадрата будет находиться еще проще. В этом случае R описанной окружности будет равен половине диагонали квадрата. В буквенном виде формула выглядит так (рисунок 2):

Радиус вписанной окружности в квадрат равен 56 корней из 2

Объяснение: после проведения диагоналей ABCD образовались два одинаковых прямоугольных треугольника АВС = CDA. Рассмотрим один из них. В треугольнике CAD:

  • угол CDA=90°;
  • стороны AD=CD. Признак равнобедренного треугольника;
  • угол DAC равен ACD. Они равны по 45°.

Чтобы найти в этом прямоугольном треугольнике гипотенузу АС, необходимо воспользоваться теоремой Пифагора:
Радиус вписанной окружности в квадрат равен 56 корней из 2, отсюда Радиус вписанной окружности в квадрат равен 56 корней из 2
Поскольку окружность касается вершин квадрата, а точка пересечения его диагоналей является центром описанной окружности (свойства), то отрезок ОС и будет радиусом окружности. Он является половинкой гипотенузы. Это утверждение вытекает из свойств равнобедренного треугольника или свойств диагоналей квадрата. Потому формула нахождения радиуса описанной окружности около квадрата в нашем случае имеет следующий вид:
Радиус вписанной окружности в квадрат равен 56 корней из 2
Поскольку AD=CD, а свойства квадратного корня позволяют вынести одно из подкоренных выражений, тогда формула приобретает вид:
Радиус вписанной окружности в квадрат равен 56 корней из 2

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Нахождения величины радиуса описанной окружности около квадрата при известной величине радиуса вписанной окружности.

  • треугольник ОСЕ – равнобедренный и прямоугольный;
  • ОЕ=ЕС=Радиус вписанной окружности в квадрат равен 56 корней из 2;
  • ОЕС=90°;
  • ЕОС=ОСЕ=45°;

Найти: ОС=?
Решение: в данном случае задачу можно решить, воспользовавшись либо теоремой Пифагора, либо формулой для R. Второй случай будет проще, поскольку формула для R выведена из теоремы.
Радиус вписанной окружности в квадрат равен 56 корней из 2

💥 Видео

R и r для квадрата. Как вывести формулы радиуса вписанной и описанной окружностей для квадрата.Скачать

R и r для квадрата. Как вывести формулы радиуса вписанной и описанной окружностей для квадрата.

Задача 6 №27932 ЕГЭ по математике. Урок 146Скачать

Задача 6 №27932 ЕГЭ по математике. Урок 146

Задача 6 №27624 ЕГЭ по математике. Урок 71Скачать

Задача 6 №27624 ЕГЭ по математике. Урок 71

17 задание ОГЭ по математикеСкачать

17 задание ОГЭ по математике

Задача 6 №27909 ЕГЭ по математике. Урок 129Скачать

Задача 6 №27909 ЕГЭ по математике. Урок 129

Задание 16 Часть 3Скачать

Задание 16  Часть 3

СТОРОНА КВАДРАТА через РАДИУС вписанной и описанной окружностейСкачать

СТОРОНА КВАДРАТА через РАДИУС вписанной и описанной окружностей

2092 найдите радиус окружности описанной около квадрата со стороной 27 корней из 2Скачать

2092 найдите радиус окружности описанной около квадрата со стороной 27 корней из 2

Задача 6 №27910 ЕГЭ по математике. Урок 130Скачать

Задача 6 №27910 ЕГЭ по математике. Урок 130

2053 радиус окружности описанной около правильного треугольника равен 56Скачать

2053 радиус окружности описанной около правильного треугольника равен 56

Вторая задача про вписанную окружность.Скачать

Вторая задача про вписанную окружность.

Нахождение радиуса описанной окружности около правильного четырехугольникаСкачать

Нахождение радиуса описанной окружности около правильного четырехугольника

Задача 6 №27916 ЕГЭ по математике. Урок 133Скачать

Задача 6 №27916 ЕГЭ по математике. Урок 133

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Задача 6 №27917 ЕГЭ по математике. Урок 134Скачать

Задача 6 №27917 ЕГЭ по математике. Урок 134
Поделиться или сохранить к себе: