Теорема пифагора для окружности

Универсальная формула теоремы Пифагора

В прямоугольном треугольнике сумма квадратов катетов равняется квадрату гипотенузы.
(теорема Пифагора)
2 2 2
A + B = C

Эта формула для случая, когда вершина прямого угла треугольника лежит на окружности проходящей через две другие вершины, а гипотенуза является диаметром этой окружности (Рис.2) и является частным случаем другой)(универсальной) формулы:

2 2 2 2 2
A + B + C + D = D (диаметр) Пояснено на Рис.1

Где через круг проведены две перпендикулярные прямые (хорды) и получены четыре а,в,с и d отрезка (катета) — как отрезок от окружности то точки пересечения прямых.
D — диаметр круга.

Формулировка. Если через круг провести две перпендикулярные прямые, то сумма квадратов
четырех полученных отрезков равняется квадрату диаметра.
Также. Из формулы:квадрату диаметра равна сумма квадратов противоположных хорд.
Также легко получается формула площади круга: сумма квадратов перпендикулярных отрезков умноженная на 0.785 что есть 11 деленное на 14.

И, конечно, сумма квадратов хорд (выделено синим на фиг 1) равняется квадрату диаметра.
примечание автора. В литературе такого описания не нашел.
Возможно: в древности она была известна, но забыта.

Доказательства есть. Оно достаточно простое и основано на построениях.

Видео:Уравнение окружности - это просто теорема ПифагораСкачать

Уравнение окружности - это просто теорема Пифагора

Окружность — модель устройства мира

Число Пи ( π ) и Золотая пропорция (φ) связаны абсолютными тождествами (см. Тождественность числа Пи и Золотой пропорции):

При этом 2* π = 360° — это окружность.

Число Пи (выраженное в градусах) — угловая величина и Золотая пропорция – линейная величина, являются различными математическими выражениями одного и того же закона Мироздания, суть которого — целостность и гармоничность мира.

2) Золотая пропорция и уравнение окружности

Золотая пропорция, есть частный случай уравнения окружности x 2 + y 2 = r 2 , при r = 1, а x = y 2 , где x = y 2 – это уравнение параболы (см. Тождественность числа Пи и Золотой пропорции).

Если есть два параметра, числа или явления, связанные между собой Золотой пропорцией, то это говорит о том, что есть также уравнение окружности, включающее в себя эти параметры, т.е. всё, что гармонично, явно или неявно связано функционально через окружность.

3) Теорема Пифагора и окружность

Уравнение окружности задано уравнением x 2 + y 2 = r 2 :

Теорема пифагора для окружности

Рассмотрим треугольник ABC:

Т.к. величина ВС равна значению x для точки A, и величина AC равна значению y для точки A, при этом радиус окружности г равен AB, то уравнение окружности x 2 + y 2 = r 2 можно записать в виде:

(ВС) 2 + (AC) 2 = (AB) 2

А это ничто иное, как уравнение прямоугольного треугольника ABC, с катетами AC, ВС, и гипотенузой AB (Теорема Пифагора).

График взаимосвязи параметров x и y, представляет собой, множество всех точек A прямоугольного треугольника ABC, при изменяемых величинах катетов AC, ВС и постоянной величине гипотенузы AB ( r = const ).

4) Окружность и энергия

Число π в угловых единицах измерения — это 180°, и это — ровно половина окружности. Если угол, соответствующий полной окружности — 2 π , обозначить любой другой буквой, например П (П= 2 π = 360°), то уравнение площади круга запишется в виде:

а уравнение периметра окружности запишется в виде:

Сравните полученные формулы с формулой кинетической энергии тела:

и формулой импульса тела:

Не означает ли это принципиальную связь массы тела с числом Пи? Сопоставляя формулы (например, импульса и длины окружности), из размерностей величин входящих в них, можно увидеть, что отношение массы ко времени будет иметь тот же математический смысл, что и число Пи.

p = mV = ml/t, где l — длина, имеющая ту же размерность, что и радиус окружности [м], а t — время [c].

5) Синус, косинус и уравнение окружности

Теорема пифагора для окружности

Так как у = sin(a), а x = cos(a), то уравнение окружности с единичным радиусом x 2 + y 2 = 1, можно записать, как:

В этом случае уравнение окружности будет отражать зависимость не от двух параметров х от y, а только от одного — угла a:

Теорема пифагора для окружности

Можно перечислить всё, что, так или иначе, связано с окружностью:

  • Окружность — это геометрическая фигура.
  • Окружность — это траектория движения, орбита.
  • Окружность — это цикличность всех процессов происходящих в мире.
  • Прямая линия, это крайний случай дуги окружности с бесконечным радиусом. Так как этот случай один из бесконечного числа вариантов, и окружность с бесконечным радиусов в пределах нашей, конечной по размерам, Вселенной существовать не может, то можно утверждать, что в мире нет прямых линий, также, как и нет прямолинейного движения.
  • Уравнение окружности можно представить в виде уравнений синуса и косинуса, поэтому все процессы с параметрами, изменяющиемися, как функция синуса или косинуса (а это — электромагнитные излучения, свет, звук, тепловое излучение, радиоволны, рентгеновское излучение и т.д. и т.п.), т.е. все или почти все процессы во Вселенной, являются частью процессов, изменяющихся по уравнению окружности.
  • Уравнение, связывающее катеты и гипотенузу прямоугольного треугольника (Теорема Пифагора), есть ни что иное, как уравнение окружности в том виде, что гипотенуза — это радиус окружности, а катеты — это проекции радиуса окружности (гипотенузы) на координатные оси.
  • Уравнение окружности включает в себе Золотую пропорцию (как частный случай уравнения окружности), и это позволяет связать музыкальную и эстетическую гармонию, а также целостность Вселенной, с окружностью.
  • Косвенно, на связь с уравнением окружности указывает подобие формул кинетической энергии, импульса тела и формул площади круга и длины окружности.
  • Окружность в виде сферы – самая распространенная форма во Вселенной. Из всех возможных тел, при условии равенства их объёмов, только сфера имеет самую маленькую площадь поверхности.

И это конечно же, далеко не весь список.

Если человечество когда-либо найдёт универсальное математическое описание всему, что происходит в мире, то нет никаких сомнений, что этим описанием будет формула окружности.

Видео:Лекция 8. Теорема Пифагора и уравнение окружностиСкачать

Лекция 8. Теорема Пифагора и уравнение окружности

Теорема Пифагора

Теорема пифагора для окружности

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Теорема Пифагора. 8 КЛАСС | Математика | TutorOnlineСкачать

Теорема Пифагора. 8 КЛАСС | Математика | TutorOnline

Основные понятия

Теорема Пифагора, определение: в прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

Гипотенуза — сторона, лежащая напротив прямого угла.

Катет — одна из двух сторон, образующих прямой угол.

Формула Теоремы Пифагора выглядит так:

где a, b — катеты, с — гипотенуза.

Из этой формулы можно вывести следующее:

  • a = √c 2 − b 2
  • b = √c 2 − a 2
  • c = √a 2 + b 2

Для треугольника со сторонами a, b и c, где c — большая сторона, действуют следующие правила:

  • если c 2 2 + b 2 , значит угол, противолежащий стороне c, является острым.
  • если c 2 = a 2 + b 2 , значит угол, противолежащий стороне c, является прямым.
  • если c 2 > a 2 +b 2 , значит угол, противолежащий стороне c, является тупым.
Записывайтесь на курсы обучения математике для школьников с 1 по 11 классы!

Видео:Задача, которую боятсяСкачать

Задача, которую боятся

Теорема Пифагора: доказательство

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Дано: ∆ABC, в котором ∠C = 90º.

Доказать: a 2 + b 2 = c 2 .

Пошаговое доказательство:

  • Проведём высоту из вершины C на гипотенузу AB, основание обозначим буквой H.
  • Прямоугольная фигура ∆ACH подобна ∆ABC по двум углам:
  • Также прямоугольная фигура ∆CBH подобна ∆ABC:
  • Введем новые обозначения: BC = a, AC = b, AB = c.
  • Из подобия треугольников получим: a : c = HB : a, b : c = AH : b.
  • Значит a 2 = c * HB, b 2 = c * AH.
  • Сложим полученные равенства:

a 2 + b 2 = c * HB + c * AH

a 2 + b 2 = c * (HB + AH)

a 2 + b 2 = c * AB

Видео:Геометрия. Теорема Пифагора. ОГЭ по математике. Задание 16Скачать

Геометрия. Теорема Пифагора. ОГЭ по математике. Задание 16

Обратная теорема Пифагора: доказательство

Если сумма квадратов двух сторон треугольника равна квадрату третьей стороны, то такой треугольник является прямоугольным.

Дано: ∆ABC

Доказать: ∠C = 90º

Пошаговое доказательство:

  • Построим прямой угол с вершиной в точке C₁.
  • Отложим на его сторонах отрезки C₁A₁ = CA и C₁B₁ = CB.
  • Проведём отрезок A₁B₁.
  • Получилась фигура ∆A₁B₁C₁, в которой ∠C₁=90º.
  • В этой фигуре ∆A₁B₁C₁ применим теорему Пифагора: A₁B₁ 2 = A₁C₁ 2 + B₁C₁ 2 .
  • Таким образом получится:
  • Значит, в фигурах треугольниках ∆ABC и ∆A₁B₁C₁:
  1. C₁A₁ = CA и C₁B₁ = CB по результату построения,
  2. A₁B₁ = AB по доказанному результату.
  • Поэтому, ∆A₁B₁C₁ = ∆ABC по трем сторонам.
  • Из равенства фигур следует равенство их углов: ∠C =∠C₁ = 90º.

Обратная теорема доказана.

Видео:ТЕОРЕМА ПИФАГОРАСкачать

ТЕОРЕМА ПИФАГОРА

Решение задач

Задание 1. Дан прямоугольный треугольник ABC. Его катеты равны 6 см и 8 см. Какое значение у гипотенузы?

Как решаем:

Пусть катеты a = 6 и b = 8.

По теореме Пифагора c 2 = a 2 + b 2 .

Подставим значения a и b в формулу:
c 2 = 6 2 + 8 2 = 36 + 64 = 100
c = √100 = 10.

Задание 2. Является ли треугольник со сторонами 8 см, 9 см и 11 см прямоугольным?

  • Выберем наибольшую сторону и проверим, выполняется ли теорема Пифагора:

Ответ: треугольник не является прямоугольным.

📺 Видео

Теорема Пифагора для чайников)))Скачать

Теорема Пифагора для чайников)))

8 класс, 16 урок, Теорема ПифагораСкачать

8 класс, 16 урок, Теорема Пифагора

ТЕОРЕМА ПИФАГОРА 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

ТЕОРЕМА ПИФАГОРА 😉 #егэ #математика #профильныйегэ #shorts #огэ

Вписанная окружность. Применение теоремы Пифагора. (для подготовки к огэ-егэ)Скачать

Вписанная окружность. Применение теоремы Пифагора. (для подготовки к огэ-егэ)

Теорема Пифагора. 8 класс.Скачать

Теорема Пифагора. 8 класс.

Теорема ПифагораСкачать

Теорема Пифагора

Шаталов за одну минуту доказывает теорему, на которую традиционно выделяется 45 минут урока!Скачать

Шаталов за одну минуту доказывает теорему, на которую традиционно выделяется 45 минут урока!

Теорема пифагора, уравнение окружности, основное тригонометрическое тождествоСкачать

Теорема пифагора, уравнение окружности, основное тригонометрическое тождество

Edu: Сколькими способами можно доказать теорему Пифагора?Скачать

Edu: Сколькими способами можно доказать теорему Пифагора?

🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)Скачать

🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)

ОГЭ Задание 24 Теорема Пифагора Вписанная окружностьСкачать

ОГЭ Задание 24 Теорема Пифагора Вписанная окружность

8 класс, 17 урок, Теорема, обратная теореме ПифагораСкачать

8 класс, 17 урок, Теорема, обратная теореме Пифагора

Самое простое Доказательство теоремы ПифагораСкачать

Самое простое Доказательство теоремы Пифагора

Геометрия с нуля! / Теорема ПифагораСкачать

Геометрия с нуля! / Теорема Пифагора
Поделиться или сохранить к себе: