Радиус вписанной окружности по трем сторонам

Все формулы для радиуса вписанной окружности
Содержание
  1. Радиус вписанной окружности в треугольник
  2. Радиус вписанной окружности в равносторонний треугольник
  3. Радиус вписанной окружности равнобедренный треугольник
  4. Радиус вписанной в треугольник окружности онлайн
  5. 1. Радиус вписанной в треугольник окружности, если известна площадь и полупериметр треуольника
  6. 2. Радиус вписанной в треугольник окружности, если известны все три стороны треугольника
  7. 3. Радиус вписанной в треугольник окружности, если известны две стороны и угол между ними
  8. 4. Радиус вписанной в треугольник окружности, если известны сторона и прилежащие два угла
  9. Радиус вписанной окружности в треугольник
  10. Радиус вписанной окружности в любой треугольник
  11. Радиус вписанной окружности в правильный треугольник
  12. Радиус вписанной окружности в равнобедренный треугольник
  13. Радиус вписанной окружности в прямоугольный треугольник
  14. 🎬 Видео

Видео:Задача 6 №27910 ЕГЭ по математике. Урок 130Скачать

Задача 6 №27910 ЕГЭ по математике. Урок 130

Радиус вписанной окружности в треугольник

Радиус вписанной окружности по трем сторонам

a , b , c — стороны треугольника

p — полупериметр, p=( a + b + c )/2

Формула радиуса вписанной окружности в треугольник ( r ):

Радиус вписанной окружности по трем сторонам

Видео:Радиус описанной окружностиСкачать

Радиус описанной окружности

Радиус вписанной окружности в равносторонний треугольник

Радиус вписанной окружности по трем сторонам

a — сторона треугольника

r — радиус вписанной окружности

Формула для радиуса вписанной окружности в равносторонний треугольник ( r ):

Радиус вписанной окружности по трем сторонам

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Радиус вписанной окружности равнобедренный треугольник

1. Формулы радиуса вписанной окружности если известны: стороны и угол

Радиус вписанной окружности по трем сторонам

a — равные стороны равнобедренного треугольника

b — сторона ( основание)

α — угол при основании

О — центр вписанной окружности

r — радиус вписанной окружности

Формула радиуса вписанной окружности в равнобедренный треугольник через стороны ( r ) :

Радиус вписанной окружности по трем сторонам

Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и угол ( r ) :

Радиус вписанной окружности по трем сторонам

Радиус вписанной окружности по трем сторонам

2. Формулы радиуса вписанной окружности если известны: сторона и высота

Радиус вписанной окружности по трем сторонам

a — равные стороны равнобедренного треугольника

b — сторона ( основание)

h — высота

О — центр вписанной окружности

r — радиус вписанной окружности

Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и высоту ( r ) :

Видео:Задача 6 №27624 ЕГЭ по математике. Урок 71Скачать

Задача 6 №27624 ЕГЭ по математике. Урок 71

Радиус вписанной в треугольник окружности онлайн

С помощю этого онлайн калькулятора можно найти радиус вписанной в треугольник окружности. Для нахождения радиуса вписанной в треугольник окружности введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.

Открыть онлайн калькулятор

Видео:РАДИУС вписанной окружности #математика #огэ #огэматематика #данирСкачать

РАДИУС вписанной окружности #математика #огэ #огэматематика #данир

1. Радиус вписанной в треугольник окружности, если известна площадь и полупериметр треуольника

Пусть известна площадь S треугольника и полупериметр

( small p=frac )(1)

где a, b, c стороны треугольника (Рис.1).

Радиус вписанной окружности по трем сторонам

Найдем радиус вписанной в треугольник окружности r.

Из центра O вписанной в треугольник окружности проведем перпендикуляры к сторонам треугольника. Все эти перпендикуляры равны радиусу r вписанной в треугольник окружности (Рис.2).

Радиус вписанной окружности по трем сторонам

Прямыми OA, OB, OC разделим треугольник ABC на три треугольника: AOC, COB, AOB. Найдем площадь треугольников AOC, COB, AOB:

( small S_=frac cdot r cdot b ,) ( small S_=frac cdot r cdot c, ) ( small S_=frac cdot r cdot a )(2)
( small S=S_+S_+S_)( small =frac cdot r cdot b ) ( small +frac cdot r cdot c ) ( small +frac cdot r cdot a ) ( small =frac cdot r cdot ( a+b+c) )(3)
( small S=r cdot p. )(4)

Найдем радиус r вписанной в треугольник окружности из равенства (4):

( small r=frac. )(5)

Пример 1. Известны площадь ( small S=17 ) и полупериметр ( small p=10 ) треугольника. Найти радиус вписанной в треугольник окружности.

Решение. Для нахождения радиуса вписанной в треугольник окружности воспользуемся формулой (5).

Подставим значения ( small S=17 ) и ( small p=10 ) в (5):

Радиус вписанной окружности по трем сторонам

Ответ: Радиус вписанной окружности по трем сторонам

Видео:ЕГЭ 6 номер. Нахождение стороны правильного треугольника по радиусу вписанной окружности.Скачать

ЕГЭ 6 номер. Нахождение стороны правильного треугольника по радиусу вписанной окружности.

2. Радиус вписанной в треугольник окружности, если известны все три стороны треугольника

Пусть известны три стороны треугольника: a, b, c. Найдем радиус вписанной в треугольник окружности (Рис.3).

Радиус вписанной окружности по трем сторонам

Площадь треугольника по трем сторонам вычисляется из формулы:

Радиус вписанной окружности по трем сторонам(6)

где полупериметр p вычисляется из формулы (1).

Подставляя (6) в (5), получим формулу радиуса вписанной в треугольник окружности:

( small r=sqrt<frac>, )(7)

Пример 2. Известны стороны треугольника: ( small a=15 ,; b=7, ; c=9.) Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанный в треугольник найдем сначала полупериметр треугольника из формулы (1):

Радиус вписанной окружности по трем сторонам

Подставим значения ( small a,; b, ; c, ; p ) в (7):

Радиус вписанной окружности по трем сторонам

Ответ: Радиус вписанной окружности по трем сторонам

Видео:9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороны

3. Радиус вписанной в треугольник окружности, если известны две стороны и угол между ними

Пусть известны стороны b и c треугольника и угол A между ними (Рис.4). Найдем формулу радиуса вписанной в треугольник окружности.

Радиус вписанной окружности по трем сторонам

Из теоремы косинусов найдем сторону a треугольника:

Радиус вписанной окружности по трем сторонам(8)

Далее, для вычисления радиуса вписанной в треугольник окружности, воспользуемся формулой (7), где полупериметр p вычисляется из (1).

Пример 3. Известны стороны треугольника: ( small b=9 ,; c=7, ; ) и угол меджу ними A=30°. Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанный в треугольник найдем сначала сторону a треугольника из формулы (8):

Радиус вписанной окружности по трем сторонам

Далее найдем p из формулы (1):

Радиус вписанной окружности по трем сторонам

Подставим значения ( small a,; b, ; c, ; p ) в (7):

Радиус вписанной окружности по трем сторонам

Ответ: Радиус вписанной окружности по трем сторонам

Видео:найти радиус окружности, описанной вокруг треугольникаСкачать

найти радиус окружности, описанной вокруг треугольника

4. Радиус вписанной в треугольник окружности, если известны сторона и прилежащие два угла

Пусть известны сторона a треугольника и прилежащие два угла B и C (Рис.5). Найдем радиус вписанной в треугольник окружности.

Радиус вписанной окружности по трем сторонам
Радиус вписанной окружности по трем сторонам
Радиус вписанной окружности по трем сторонам
Радиус вписанной окружности по трем сторонам(9)

Поскольку сумма углов треугольника равна 180°, то имеем ( small angle A=180°-(angle B+angle C). ) Из формул приведения тригонометрических функций имеем: ( small sin A=sin (180°-( B+ C)) ) ( small =sin (B+C). ) Тогда формулы (9) можно переписать так:

Радиус вписанной окружности по трем сторонам(10)

Получая значения сторон b, c из (10) и значение p из (1), можно найди радиус вписанной в треугольник окружности из формулы (7). Таким образом, для нахождения радиуса вписанной в треугольник окружности через сторону и прилежащим двум углам применяется формула

Радиус вписанной окружности по трем сторонам(11)
Радиус вписанной окружности по трем сторонам(12)
Радиус вписанной окружности по трем сторонам,(13)
Радиус вписанной окружности по трем сторонам.(14)

Пример 4. Сторона треугольника равена: ( small a=7 ,) а прилежащие два угла равны соответственно ( small angle B=25°, ) ( small angle C=40°, ) Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся формулой (11). Найдем, сначала, стороны b и c из формул (12),(13). Подставим значения ( small a=7 ,) ( small angle B=25°, ) ( small angle C=40°, ) в (12) и (13):

Радиус вписанной окружности по трем сторонам.

Далее найдем полупериметр p из формулы (14):

Радиус вписанной окружности по трем сторонамРадиус вписанной окружности по трем сторонам.

Подставляя значения a, b, c, p в (11), получим:

Радиус вписанной окружности по трем сторонам

Ответ: Радиус вписанной окружности по трем сторонам

Видео:Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.

Радиус вписанной окружности в треугольник

Радиус вписанной окружности по трем сторонам

Радиус вписанной в треугольник окружности
рассчитать и выразить через периметр, площадь,
высоту, основание, стороны, диаметр. Формулы
радиуса окружности вписанной в треугольник.

Центр вписанной в треугольник окружности — это одна
из замечательных точек треугольника, она расположена
в точке пересечения биссектрис треугольника, её
иногда называют инцентром.

Центр вписанной окружности правильного треугольника — это
точка, где пересекаются высоты, медианы и биссектрисы.

В любой треугольник можно вписать только одну
окружность, которая находится внутри треугольника.
Центр вписанной окружности равноудален от всех
сторон треугольника. Точка, где окружность пересекается
со стороной треугольника, называется точкой касания.

Все отрезки, которые проведены от точки касания к центру
вписанной окружности имеют одинаковую длину.

Чтобы найти радиус окружности вписанной в треугольник
надо площадь разделить на полупериметр.

Диаметр вписанной окружности в треугольник численно
равен двум радиусам вписанной окружности. Радиус
вписанной окружности можно найти по разным
формулам, все зависит от того, какой треугольник.

Всего различают четыре вида треугольников:

  • Разносторонний / любой
  • Правильный / равносторонний
  • Равнобедренный / равнобочный
  • Прямоугольный / прямой

Радиус вписанной окружности в любой треугольник

  1. Радиус вписанной окружности в любой треугольник через площадь и полупериметр

S — площадь; p — полупериметр;
Радиус вписанной окружности в любой треугольник через все стороны и полупериметр

a, b, c — стороны; p — полупериметр;
Радиус вписанной окружности в любой треугольник через основание, высоту и полупериметр

a — основание, сторона на которую падает высота; h — высота; p — полупериметр;
Радиус вписанной окружности в любой треугольник через диаметр вписанной окружности

D — диаметр вписанной окружности;

Радиус вписанной окружности в правильный треугольник

  1. Радиус вписанной окружности в правильный треугольник через сторону

a — сторона;
Радиус вписанной окружности в правильный треугольник через радиус описанной окружности

R — радиус описанной окружности;
Радиус вписанной окружности в правильный треугольник через диаметр вписанной окружности

D — диаметр вписанной окружности;

Радиус вписанной окружности в равнобедренный треугольник

  1. Радиус вписанной окружности в равнобедренный треугольник через боковые стороны и основание

a — боковая сторона; b — основание;
Радиус вписанной окружности в равнобедренный треугольник через высоту и основание

b — основание; h — высота;
Радиус вписанной окружности в равнобедренный треугольник через диаметр вписанной окружности

D — диаметр вписанной окружности;

Радиус вписанной окружности в прямоугольный треугольник

  1. Радиус вписанной окружности в прямоугольный треугольник через два катета и гипотенузу

a, b — катеты; с — гипотенуза.
Радиус вписанной окружности в прямоугольный треугольник через гипотенузу и два катета

c — гипотенуза; a, b — катеты;
Радиус вписанной окружности в прямоугольный треугольник через диаметр вписанной окружности

D — диаметр вписанной окружности;

Вписанная окружность в треугольник — это окружность,
которая вписана в треугольник и касается всех его сторон.

Радиус вписанной окружности в треугольник — это отрезок,
проведенный от центра вписанной окружности до любой стороны.

Длина радиуса вписанной окружности, диаметра
вписанной окружности а также других величин
измеряется в мм, см, м, км и так далее.

В любом треугольнике все радиусы и диаметры
равны, имеют одинаковую длину.

🎬 Видео

Задача 6 №27909 ЕГЭ по математике. Урок 129Скачать

Задача 6 №27909 ЕГЭ по математике. Урок 129

Формулы для вычисления площади правильного многоугольника,его стороны и радиуса вписанной окружностиСкачать

Формулы для вычисления площади правильного многоугольника,его стороны и радиуса вписанной окружности

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Радиус вписанной окружности, формулу через площадь и полупериметрСкачать

Радиус вписанной окружности, формулу через площадь и полупериметр

Радиус вписанной окружности #математика #егэ #математикапрофиль2023 #fyp #школаСкачать

Радиус вписанной окружности #математика #егэ #математикапрофиль2023 #fyp #школа

Задача 6 №27916 ЕГЭ по математике. Урок 133Скачать

Задача 6 №27916 ЕГЭ по математике. Урок 133

Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

Окружность вписана в равнобедренный треугольник. Найти её радиус.

№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружностиСкачать

№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружности

ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэСкачать

ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэ

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

112. Формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписаннойСкачать

112. Формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписанной
Поделиться или сохранить к себе: