Радиус описанной окружности сторона делить на синус

Теорема синусов

Радиус описанной окружности сторона делить на синус

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Радиус описанной окружности (ОГЭ, ЕГЭ)Скачать

Радиус описанной окружности (ОГЭ, ЕГЭ)

Доказательство теоремы синусов

Теорема синусов звучит так: стороны треугольника пропорциональны синусам противолежащих углов.

Нарисуем стандартный треугольник и запишем теорему формулой:

Радиус описанной окружности сторона делить на синус

Формула теоремы синусов:

Радиус описанной окружности сторона делить на синус

Докажем теорему с помощью формулы площади треугольника через синус его угла.

Радиус описанной окружности сторона делить на синус

Из этой формулы мы получаем два соотношения:


    Радиус описанной окружности сторона делить на синус

Радиус описанной окружности сторона делить на синус
На b сокращаем, синусы переносим в знаменатели:
Радиус описанной окружности сторона делить на синус

  • Радиус описанной окружности сторона делить на синус
    bc sinα = ca sinβ
    Радиус описанной окружности сторона делить на синус
  • Из этих двух соотношений получаем:

    Радиус описанной окружности сторона делить на синус

    Теорема синусов для треугольника доказана.

    Эта теорема пригодится, чтобы найти:

    • Стороны треугольника, если даны два угла и одна сторона.
    • Углы треугольника, если даны две стороны и один прилежащий угол.

    Видео:Радиус описанной окружностиСкачать

    Радиус описанной окружности

    Доказательство следствия из теоремы синусов

    У теоремы синусов есть важное следствие. Нарисуем треугольник, опишем вокруг него окружность и рассмотрим следствие через радиус.

    Радиус описанной окружности сторона делить на синус

    Радиус описанной окружности сторона делить на синус

    где R — радиус описанной около треугольника окружности.

    Так образовались три формулы радиуса описанной окружности:

    Радиус описанной окружности сторона делить на синус

    Основной смысл следствия из теоремы синусов заключен в этой формуле:

    Радиус описанной окружности сторона делить на синус

    Радиус описанной окружности не зависит от углов α, β, γ. Удвоенный радиус описанной окружности равен отношению стороны треугольника к синусу противолежащего угла.

    Для доказательства следствия теоремы синусов рассмотрим три случая.

    1. Угол ∠А = α — острый в треугольнике АВС.

    Радиус описанной окружности сторона делить на синус

    Проведем диаметр BA1. В этом случае точка А и точка А1 лежат в одной полуплоскости от прямой ВС.

    Используем теорему о вписанном угле и видим, что ∠А = ∠А1 = α. Треугольник BA1C — прямоугольный, в нём ∠ BCA1 = 90°, так как он опирается на диаметр BA1.

    Чтобы найти катет a в треугольнике BA1C, нужно умножить гипотенузу BA1 на синус противолежащего угла.

    BA1 = 2R, где R — радиус окружности

    Следовательно: R = α/2 sinα

    Для острого треугольника с описанной окружностью теорема доказана.

    2. Угол ∠А = α — тупой в треугольнике АВС.

    Проведем диаметр окружности BA1. Точки А и A1 по разные стороны от прямой ВС. Четырёхугольник ACA1B вписан в окружность, и его основное свойство в том, что сумма противолежащих углов равна 180°.

    Следовательно, ∠А1 = 180° — α.

    Радиус описанной окружности сторона делить на синус

    Вспомним свойство вписанного в окружность четырёхугольника:

    Радиус описанной окружности сторона делить на синус

    Также известно, что sin(180° — α) = sinα.

    В треугольнике BCA1 угол при вершине С равен 90°, потому что он опирается на диаметр. Следовательно, катет а мы находим таким образом:

    α = 2R sin (180° — α) = 2R sinα

    Следовательно: R = α/2 sinα

    Для тупого треугольника с описанной окружностью теорема доказана.

    Часто используемые тупые углы:

    • sin120° = sin(180° — 60°) = sin60° = 3/√2;
    • sin150° = sin(180° — 30°) = sin30° = 1/2;
    • sin135° = sin(180° — 45°) = sin45° = 2/√2.

    3. Угол ∠А = 90°.

    Радиус описанной окружности сторона делить на синус

    В прямоугольнике АВС угол А прямой, а противоположная сторона BC = α = 2R, где R — это радиус описанной окружности.

    Радиус описанной окружности сторона делить на синус

    Для прямоугольного треугольника с описанной окружностью теорема доказана.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

    Вписанные и описанные окружности. Вебинар | Математика

    Теорема о вписанном в окружность угле

    Из теоремы синусов и ее следствия можно сделать любопытный вывод: если известна одна сторона треугольника и синус противолежащего угла — можно найти и радиус описанной окружности. Но треугольник не задаётся только этими величинами. Это значит, что если треугольник еще не задан, найти радиус описанной окружности возможно.

    Раскроем эту тему на примере теоремы о вписанном в окружность угле и следствиях из нее.

    Теорема о вписанном угле: вписанный в окружность угол измеряется половиной дуги, на которую он опирается.

    Радиус описанной окружности сторона делить на синус

    ∠А = α опирается на дугу ВС. Дуга ВС содержит столько же градусов, сколько ее центральный угол ∠BOC.

    Формула теоремы о вписанном угле:

    Радиус описанной окружности сторона делить на синус

    Следствие 1 из теоремы о вписанном в окружность угле

    Вписанные углы, опирающиеся на одну дугу, равны.

    Радиус описанной окружности сторона делить на синус

    ∠А = ∠BAC опирается на дугу ВС. Поэтому ∠A = 1/2(∠COB).

    Если мы возьмём точки A1, А2. Аn и проведём от них лучи, которые опираются на одну и ту же дугу, то получим:

    Радиус описанной окружности сторона делить на синус

    На рисунке изображено множество треугольников, у которых есть общая сторона СВ и одинаковый противолежащий угол. Треугольники являются подобными, и их объединяет одинаковый радиус описанной окружности.

    Следствие 2 из теоремы о вписанном в окружность угле

    Вписанные углы, которые опираются на диаметр, равны 90°, то есть прямые.

    Радиус описанной окружности сторона делить на синус

    ВС — диаметр описанной окружности, следовательно ∠COB = 180°.

    Радиус описанной окружности сторона делить на синус

    Следствие 3 из теоремы о вписанном в окружность угле

    Сумма противоположных углов вписанного в окружность четырёхугольника равна 180°. Это значит, что:

    Радиус описанной окружности сторона делить на синус

    Угол ∠А = α опирается на дугу DCB. Поэтому DCB = 2α по теореме о вписанном угле.

    Угол ∠С = γ опирается на дугу DAB. Поэтому DAB = 2γ.

    Но так как 2α и 2γ — это вся окружность, то 2α + 2γ = 360°.

    Следовательно: α + γ = 180°.

    Поэтому: ∠A + ∠C = 180°.

    Следствие 4 из теоремы о вписанном в окружность угле

    Синусы противоположных углов вписанного четырехугольника равны. То есть:

    sinγ = sin(180° — α)

    Так как sin(180° — α) = sinα, то sinγ = sin(180° — α) = sinα

    Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

    ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

    Примеры решения задач

    Теорема синусов и следствия из неё активно используются при решении задач. Рассмотрим несколько примеров, чтобы закрепить материал.

    Пример 1. В треугольнике ABC ∠A = 45°,∠C = 15°, BC = 4√6. Найти AC.

      Согласно теореме о сумме углов треугольника:

    ∠B = 180° — 45° — 15° = 120°

  • Сторону AC найдем по теореме синусов:
    Радиус описанной окружности сторона делить на синус
  • Пример 2. Гипотенуза и один из катетов прямоугольного треугольника равны 10 и 8 см. Найти угол, который расположен напротив данного катета.

    В этой статье мы узнали, что в прямоугольном треугольнике напротив гипотенузы располагается угол, равный 90°. Примем неизвестный угол за x. Тогда соотношение сторон выглядит так:

    Радиус описанной окружности сторона делить на синус

    Радиус описанной окружности сторона делить на синус

    Значит x = sin (4/5) ≈ 53,1°.

    Ответ: угол составляет примерно 53,1°.

    Видео:найти радиус окружности, описанной вокруг треугольникаСкачать

    найти радиус окружности, описанной вокруг треугольника

    Запоминаем

    Обычная теорема: стороны треугольника пропорциональны синусам противолежащих углов.

    >
    Радиус описанной окружности сторона делить на синус

    Расширенная теорема: в произвольном треугольнике справедливо следующее соотношение:

    Видео:9 класс, 13 урок, Теорема синусовСкачать

    9 класс, 13 урок, Теорема синусов

    Следствие теоремы синусов

    Следствие теоремы синусов

    Отношение стороны треугольника к синусу противолежащего угла равно двум радиусам описанной около этого треугольника окружности:

    Радиус описанной окружности сторона делить на синус

    Радиус описанной окружности сторона делить на синус

    окружность (O, R) — описанная,

    Радиус описанной окружности сторона делить на синус

    Радиус описанной окружности сторона делить на синусI. Если треугольник ABC — остроугольный.

    Проведем из точки B диаметр BD.

    ∠D=∠A=α (как вписанные углы, опирающиеся на одну хорду BC).

    ∠BCD=90º (как вписанный угол, опирающийся на диаметр).

    Из прямоугольного треугольника BCD по определению синуса острого угла прямоугольного треугольника

    Радиус описанной окружности сторона делить на синус

    Радиус описанной окружности сторона делить на синус

    Радиус описанной окружности сторона делить на синус

    Что и требовалось доказать.

    I. Если треугольник ABC — тупоугольный.

    Радиус описанной окружности сторона делить на синусРадиус описанной окружности сторона делить на синус

    В этом случае четырехугольник ABCD — вписанный в окружность, а значит, сумма его противолежащих углов равна 180º:

    Отсюда ∠D=∠A=180º — α.

    Радиус описанной окружности сторона делить на синус

    дальнейшее решение совпадает с решением I.

    III. Если треугольник ABC — прямоугольный.

    Видео:Теорема синусов и косинусов. Связь площади треугольника с радиусами вписанной и описанной окружностиСкачать

    Теорема синусов и косинусов. Связь площади треугольника с радиусами вписанной и описанной окружности

    Расширенная синусов теорема с примерами

    Радиус описанной окружности сторона делить на синус

    При подготовке к ЕГЭ по математике одиннадцатиклассник должен помнить базовый набор формул, которые помогут решать задачи. Одной из них является синусов теорема, которая отражает взаимосвязь между сторонами и углами треугольника. Напомним, доказательство теоремы учить не нужно, поскольку экзамен ориентирован на проверку практических навыков. Лучше посвятить время разбору примеров, в которых можно применить указанную математическую закономерность.

    Видео:#233. Теоремы синусов и косинусов | Формулы радиусов окружностейСкачать

    #233. Теоремы синусов и косинусов | Формулы радиусов окружностей

    Теорема синусов с примерами

    Человечество знакомо с теоремой синусов довольно давно — еще в начале XXI века ее доказательство приводил в своей работе «Книга о неизвестных дугах сферы» западноарабский астроном и математик Ибн Муаз аль-Джайяни.

    Существует два варианта теоремы синусов:

    • обычный — устанавливает соотношения между сторонами треугольника и синусами его углов;
    • расширенный — связывает соотношение сторон треугольника с радиусами описанной окружности.

    Формулировка обычной синусов теоремы: отношение сторон треугольника к синусам противолежащих углов равны или стороны пропорциональны синусам противолежащих углов.

    Радиус описанной окружности сторона делить на синус

    Синусов теорема с примерами

    Пример 1. В треугольнике АВС сторона АВ равна 5 см, а синус противолежащего угла АСВ = 3/5. Найти сторону ВС, если синус угла САВ, прилежащего к стороне АВ, равен 1/2.

    Решение

    Составим соотношение фигурирующих в условии сторон и синусов их углов:

    АВ : sin ∠АСВ = ВС : sin ∠САВ.

    Подставим известные значения:

    Выразим из этого выражения ВС:

    ВС = (5 : 3/5) : 1/2 = 5 : 1/2 = 10 см.

    Ответ: ВС = 10 см.

    Пример 2. В треугольнике АВС сторона АВ равна 10 см, а противолежащий угол АСВ = 30°. Найти остальные стороны, если угол САВ равен 60°.

    Решение

    Для решения этой задачи воспользуемся прилагаемой таблицей, в которой указаны значения синусов основных углов. В остальном ход решения будет аналогичен предыдущему примеру за исключением одного маленького хода. Для начала составим соотношение сторон и синусов противолежащих углов:

    АВ : sin ∠АСВ = ВС : sin ∠САВ = АС : sin ∠ВАС.

    На первом этапе нам известны только три из шести членов этого равенства, причем два из них в косвенном виде:

    10 : sin 30° = ВС : sin 60° = АС : sin ∠ВАС.

    Если вспомнить, что сумма углов треугольника равна 180°, то легко найти оставшийся угол:

    ∠ВАС = 180° – (∠АСВ + ∠САВ) = 180° – (30° + 60°) = 90°.

    Мы уже знаем и третий угол, поэтому уравнение приобретет следующий вид:

    10 : sin 30° = ВС : sin 60° = АС : sin 90°.

    Дальше поступаем, как в предыдущей задаче, выразив стороны через известные члены выражений:

    ВС = sin 60° ∙ 10 : sin 30°,

    АС = sin 90° ∙ 10 : sin 30°.

    Обратимся к таблице, приведенной выше и выберем из нее соответствующие синусы известных углов:

    ВС = √3/2∙ 10 : 1/2 = 10√3 см,

    АС = 1 ∙ 10 : 1/2 = 20 см.

    Ответ: ВС = 10√3 см; АС = 20 см.

    Радиус описанной окружности сторона делить на синус

    Синусов теорема с примерами

    Видео:ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэСкачать

    ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэ

    Расширенная синусов теорема с примерами

    Формулировка расширенной теоремы синусов: отношение сторон треугольника к синусам противолежащих углов равны друг другу и удвоенному радиусу окружности, описанной вокруг него.

    Пример 3. Найти площадь треугольника, если диаметр описанной окружности D равен 20 см. Угол АСВ = 30°, а угол САВ = 60°.

    Для решения воспользуемся расширенной формулировкой теоремы синусов:

    АВ : sin ∠АСВ = ВС : sin ∠САВ = АС : sin ∠ВАС = 2R.

    В этой формулировке нам известны два из семи компонентов и еще лва мы можем определить из базовых знаний по геометрии:

    • R = ½ D, следовательно 2 R = D = 20 см;
    • ∠ВАС = 180° – (∠АСВ + ∠САВ) = 180° – (30° + 60°) = 90°.

    Подставим в исходное выражение известные величины и получим соотношение:

    АВ : sin 30° = ВС : sin 60° = АС : sin 90° = 20.

    Основным отличием от предыдущей задачи является то, что нам неизвестна сторона АВ, зато известен удвоенный радиус описанной окружности. Это позволяет составить выражения для нахождения всех сторон треугольника:

    Выберем из таблицы значения синусов углов и вычитаем стороны треугольника:

    ВС = 20 ∙ sin 60° = 20 ∙ √3/2 = 10√3 см,

    АС = 20 ∙ sin 90° = 20 ∙ 1 = 20 см,

    АВ = 20 ∙ sin 30° = 20 ∙ 1/2 = 10 см.

    Радиус описанной окружности сторона делить на синус

    Синусов теорема с примерами

    Внимательный читатель заметил, что мы «зашифровали» в этой задаче треугольник из предыдущего примера. Теперь осталось найти его площадь. Для этого берем стандартную формулу площади произвольного треугольника, которая равна половине произведения сторон на синус угла между ними

    S = ½ ∙ a ∙ b ∙ sin α

    Поскольку нам известны все стороны и все углы, то мы можем выбрать любые из них. Возьмем стороны АС и АВ, а также угол САВ между ними:

    S = ½ ∙ АС ∙АВ ∙ sin 60° = ½ ∙ 20 ∙10 ∙ √3/2 = 50√3 см 2 .

    Примечание: внимательный читатель заметил, что наш треугольник — прямоугольный, так как один из его углов равен 90°. В таком случае можно обойтись без знания синуса угла, вычислив площадь треугольника как половину площади прямоугольника, длина и ширина которого равна катетам треугольника.

    💥 Видео

    Как найти радиус описанной окружности (Задача №324618)Скачать

    Как найти радиус описанной окружности (Задача №324618)

    Теорема синусов – просто и красиво // Vital MathСкачать

    Теорема синусов – просто и красиво // Vital Math

    Вписанная и описанная окружность - от bezbotvyСкачать

    Вписанная и описанная окружность - от bezbotvy

    Задача 6 №27919 ЕГЭ по математике. Урок 136Скачать

    Задача 6 №27919 ЕГЭ по математике. Урок 136

    ОГЭ по математике. Задание 24. Теорема синусов. Радиус описанной окружности.Скачать

    ОГЭ по математике. Задание 24. Теорема синусов. Радиус описанной окружности.

    Радиус описанной окружности трапецииСкачать

    Радиус описанной окружности трапеции

    Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать

    Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.

    Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

    Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

    9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать

    9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороны

    Задача 6 №27921 ЕГЭ по математике. Урок 138Скачать

    Задача 6 №27921 ЕГЭ по математике. Урок 138

    Геометрия ОГЭ задача Теорема синусовСкачать

    Геометрия ОГЭ задача Теорема синусов
    Поделиться или сохранить к себе: