Прямой угол в окружности

Углы в окружности

Рассмотрим углы в окружности и углы, связанные с окружностью.

  • Угол с вершиной в центре окружности.
  • Угол с вершиной на окружности (его стороны пересекают окружность).
  • Угол с вершиной внутри окружности (не в центре).
  • Угол с вершиной вне окружности, стороны которого пересекают окружность.

I. Угол с вершиной в центре окружности называется центральным углом.

Стороны центрального угла разбивают окружность на две части. Дугой, соответствующей данному центральному углу, называется та часть, которая содержится внутри угла.

Прямой угол в окружностиНапример, центральному углу AOC соответствует дуга AC (или дуга AFC. Обычно дугу называют двумя буквами. Но, поскольку любую из двух, на которые точки A и C делят окружность, можно назвать AC, то третью, дополнительную букву, иногда используют для уточнения выбранной дуги).

Градусная мера дуги окружности равна градусной мере соответствующего центрального угла:

Прямой угол в окружностиII. Угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется вписанным углом.

Стороны вписанного угла также разбивают окружность на две дуги. Говорят, что вписанный угол опирается на лугу, которая лежит внутри него.

Например, вписанный угол ABC опирается на дугу AC (или дугу AFC).

Вписанный угол равен половине дуги, на которую он опирается:

Прямой угол в окружности

Есть другой вариант формулировки свойства вписанного угла.

Прямой угол в окружностиВписанный угол равен половине соответствующего ему центрального угла:

Прямой угол в окружности

Прямой угол в окружности

Прямой угол в окружностиВписанный угол, опирающийся на полуокружность — прямой.

И наоборот: любой прямой вписанный угол опирается на полуокружность.

Другая формулировка этого утверждения:

(обратно: Если вписанный угол прямой, то он опирается на диаметр).

III. Угол, вершина которого лежит в окружности — это угол между пересекающимися хордами.

Угол между пересекающимися хордами равен полусумме дуг, заключённых между его сторонами и сторонами вертикального ему угла.

Прямой угол в окружности

Прямой угол в окружности

IV. Угол с вершиной вне окружности, обе стороны которого пересекают окружность — это угол между секущими, которые пересекаются вне окружности.

Угол между секущими, пересекающимися вне окружности, измеряется полуразностью большей и меньшей дуг, заключенных между его сторонами.

Видео:Сопряжение двух пересекающихся прямых. Урок 9. (Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать

Сопряжение двух пересекающихся прямых. Урок 9. (Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)

Углы, связанные с окружностью

Прямой угол в окружностиВписанные и центральные углы
Прямой угол в окружностиУглы, образованные хордами, касательными и секущими
Прямой угол в окружностиДоказательства теорем об углах, связанных с окружностью

Видео:Сопряжение острого углаСкачать

Сопряжение острого угла

Вписанные и центральные углы

Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

Прямой угол в окружности

Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

Прямой угол в окружности

Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Теоремы о вписанных и центральных углах

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

ФигураРисунокТеорема
Вписанный уголПрямой угол в окружности
Вписанный уголПрямой угол в окружностиВписанные углы, опирающиеся на одну и ту же дугу равны.
Вписанный уголПрямой угол в окружностиВписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
Вписанный уголПрямой угол в окружностиДва вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
Вписанный уголПрямой угол в окружностиВписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
Окружность, описанная около прямоугольного треугольникаПрямой угол в окружности

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Прямой угол в окружности

Вписанные углы, опирающиеся на одну и ту же дугу равны.

Прямой угол в окружности

Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

Прямой угол в окружности

Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

Прямой угол в окружности

Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

Прямой угол в окружности

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Прямой угол в окружности

Видео:Найти центр кругаСкачать

Найти центр круга

Теоремы об углах, образованных хордами, касательными и секущими

Вписанный угол
Окружность, описанная около прямоугольного треугольника

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

ФигураРисунокТеоремаФормула
Угол, образованный пересекающимися хордамиПрямой угол в окружностиПрямой угол в окружности
Угол, образованный секущими, которые пересекаются вне кругаПрямой угол в окружностиПрямой угол в окружности
Угол, образованный касательной и хордой, проходящей через точку касанияПрямой угол в окружностиПрямой угол в окружности
Угол, образованный касательной и секущейПрямой угол в окружностиПрямой угол в окружности
Угол, образованный двумя касательными к окружностиПрямой угол в окружностиПрямой угол в окружности

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Прямой угол в окружности

Прямой угол в окружности

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Прямой угол в окружности

Прямой угол в окружности

Прямой угол в окружности

Прямой угол в окружности

Угол, образованный пересекающимися хордами хордами
Прямой угол в окружности
Формула: Прямой угол в окружности
Угол, образованный секущими секущими , которые пересекаются вне круга
Формула: Прямой угол в окружности

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный касательной и хордой хордой , проходящей через точку касания
Прямой угол в окружности
Формула: Прямой угол в окружности
Угол, образованный касательной и секущей касательной и секущей
Формула: Прямой угол в окружности

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный двумя касательными касательными к окружности
Формулы: Прямой угол в окружности

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Видео:Вписанные и центральные углыСкачать

Вписанные и центральные углы

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Прямой угол в окружности

Прямой угол в окружности

Прямой угол в окружности

Прямой угол в окружности

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

Прямой угол в окружности

В этом случае справедливы равенства

Прямой угол в окружности

Прямой угол в окружности

Прямой угол в окружности

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

Прямой угол в окружности

В этом случае справедливы равенства

Прямой угол в окружности

Прямой угол в окружности

Прямой угол в окружности

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Прямой угол в окружности

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

Прямой угол в окружности

Прямой угол в окружности

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Прямой угол в окружности

Прямой угол в окружности

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

Прямой угол в окружности

Прямой угол в окружности

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Прямой угол в окружности

Прямой угол в окружности

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

Прямой угол в окружности

Прямой угол в окружности

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Прямой угол в окружности

Прямой угол в окружности

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

Прямой угол в окружности

Прямой угол в окружности

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Прямой угол в окружности

Прямой угол в окружности

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

Видео:Построить прямой угол с помощью двусторонней линейки.Скачать

Построить прямой угол с помощью двусторонней линейки.

Центральные и вписанные углы

Прямой угол в окружности

О чем эта статья:

Видео:Углы, вписанные в окружность. 9 класс.Скачать

Углы, вписанные в окружность. 9 класс.

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

Прямой угол в окружности

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.

Вписанный угол равен половине дуги, на которую опирается.

Прямой угол в окружности

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Видео:Центр кругаСкачать

Центр круга

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

  • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

Прямой угол в окружности

Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

  • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:

Прямой угол в окружности

  • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

Прямой угол в окружности

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

  • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

Прямой угол в окружности

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

Прямой угол в окружности

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

Прямой угол в окружности

  • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

Прямой угол в окружности

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

  • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

Прямой угол в окружности

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

  • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

Прямой угол в окружности

ㄥBAC + ㄥBDC = 180°

Видео:7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

Прямой угол в окружности

Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Прямой угол в окружности

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

Прямой угол в окружности

СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

🔥 Видео

#207. Окружность девяти точек | лемма о трезубце | ортотреугольник | прямая ЭйлераСкачать

#207. Окружность девяти точек | лемма о трезубце | ортотреугольник | прямая Эйлера

Что такое угол? Виды углов: прямой, острый, тупой, развернутый уголСкачать

Что такое угол? Виды углов: прямой, острый, тупой,  развернутый угол

Вписанные углы в окружностиСкачать

Вписанные углы в окружности

№705. Около прямоугольного треугольника ABC с прямым углом С описана окружность. Найдите радиусСкачать

№705. Около прямоугольного треугольника ABC с прямым углом С описана окружность. Найдите радиус

Скрытые возможности обычного угольника! А вы их знали?Скачать

Скрытые возможности обычного угольника! А вы их знали?

Головоломка № 15 Окружность вписана в прямой угол. Найти радиусСкачать

Головоломка № 15 Окружность вписана в прямой угол. Найти радиус

1 2 4 сопряжение окружностейСкачать

1 2 4  сопряжение окружностей

Измерение угла с помощью транспортираСкачать

Измерение угла с помощью транспортира

18 Две непересекающиеся окружности вписаны в прямой уголСкачать

18 Две непересекающиеся окружности вписаны в прямой угол

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность
Поделиться или сохранить к себе: