Прямая проходящая через середину окружности

Отрезки и прямые, связанные с окружностью. Теорема о бабочке
Прямая проходящая через середину окружностиОтрезки и прямые, связанные с окружностью
Прямая проходящая через середину окружностиСвойства хорд и дуг окружности
Прямая проходящая через середину окружностиТеоремы о длинах хорд, касательных и секущих
Прямая проходящая через середину окружностиДоказательства теорем о длинах хорд, касательных и секущих
Прямая проходящая через середину окружностиТеорема о бабочке

Прямая проходящая через середину окружности

Содержание
  1. Отрезки и прямые, связанные с окружностью
  2. Свойства хорд и дуг окружности
  3. Теоремы о длинах хорд, касательных и секущих
  4. Доказательства теорем о длинах хорд, касательных и секущих
  5. Теорема о бабочке
  6. Окружность. Относительное взаимоположение окружностей.
  7. Окружность и круг — определение и вычисление с примерами решения
  8. Определение окружности и круга
  9. Определение окружности и ее элементов
  10. Что такое окружность и круг
  11. Пример №3
  12. Окружность и треугольник
  13. Описанная окружность
  14. Вписанная окружность
  15. Пример №4
  16. Пример №5
  17. Геометрические построения
  18. Пример №6
  19. Пример №7
  20. Пример №8
  21. Пример №9
  22. Пример №10
  23. Пример №11
  24. Пример №12
  25. Пример №13
  26. Задачи на построение
  27. Пример №14
  28. Пример №15
  29. Пример №16
  30. Пример №17
  31. Свойство диаметра, перпендикулярного хорде
  32. Касательная к окружности
  33. Признак касательной
  34. Свойство отрезков касательных
  35. Касание двух окружностей
  36. Задачи на построение
  37. Основные задачи на построение
  38. Решение задач на построение
  39. Пример №18
  40. Геометрическое место точек
  41. Основные теоремы о ГМТ
  42. Метод геометрических мест
  43. Пример №19
  44. Описанная и вписанная окружности треугольника
  45. Окружность, вписанная в треугольник
  46. Пример №20
  47. Задачи, которые невозможно решить с помощью циркуля и линейки
  48. Циркуль или линейка
  49. Об аксиомах геометрии
  50. Метод вспомогательного треугольника
  51. Пример №21
  52. Пример №22
  53. Пример №23
  54. Реальная геометрия
  55. Справочный материал по окружности и кругу
  56. Что называют окружностью
  57. Окружность, вписанная в треугольник
  58. Окружность, описанная около треугольника
  59. Геометрическое место точек в окружности и круге
  60. Некоторые свойства окружности. Касательная к окружности
  61. 💥 Видео

Видео:№204 Концы отрезка АВ лежат на параллельных прямых а и b. Прямая, проходящая через середину ОСкачать

№204 Концы отрезка АВ лежат на параллельных прямых а и b. Прямая, проходящая через середину О

Отрезки и прямые, связанные с окружностью

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Конечная часть плоскости, ограниченная окружностью

Отрезок, соединяющий центр окружности с любой точкой окружности

Отрезок, соединяющий две любые точки окружности

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

Прямая, пересекающая окружность в двух точках

ФигураРисунокОпределение и свойства
ОкружностьПрямая проходящая через середину окружности
КругПрямая проходящая через середину окружности
РадиусПрямая проходящая через середину окружности
ХордаПрямая проходящая через середину окружности
ДиаметрПрямая проходящая через середину окружности
КасательнаяПрямая проходящая через середину окружности
СекущаяПрямая проходящая через середину окружности
Окружность
Прямая проходящая через середину окружности

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

КругПрямая проходящая через середину окружности

Конечная часть плоскости, ограниченная окружностью

РадиусПрямая проходящая через середину окружности

Отрезок, соединяющий центр окружности с любой точкой окружности

ХордаПрямая проходящая через середину окружности

Отрезок, соединяющий две любые точки окружности

ДиаметрПрямая проходящая через середину окружности

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

КасательнаяПрямая проходящая через середину окружности

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

СекущаяПрямая проходящая через середину окружности

Прямая, пересекающая окружность в двух точках

Видео:Разбор Задачи №16 из работы Статград от 22 апреля 2020Скачать

Разбор Задачи №16 из работы Статград от 22 апреля 2020

Свойства хорд и дуг окружности

ФигураРисунокСвойство
Диаметр, перпендикулярный к хордеПрямая проходящая через середину окружностиДиаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.
Диаметр, проходящий через середину хордыДиаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.
Равные хордыПрямая проходящая через середину окружностиЕсли хорды равны, то они находятся на одном и том же расстоянии от центра окружности.
Хорды, равноудалённые от центра окружностиЕсли хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.
Две хорды разной длиныПрямая проходящая через середину окружностиБольшая из двух хорд расположена ближе к центру окружности.
Равные дугиПрямая проходящая через середину окружностиУ равных дуг равны и хорды.
Параллельные хордыПрямая проходящая через середину окружностиДуги, заключённые между параллельными хордами, равны.
Диаметр, перпендикулярный к хорде
Прямая проходящая через середину окружности

Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.

Диаметр, проходящий через середину хордыПрямая проходящая через середину окружности

Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.

Равные хордыПрямая проходящая через середину окружности

Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности.

Хорды, равноудалённые от центра окружностиПрямая проходящая через середину окружности

Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.

Две хорды разной длиныПрямая проходящая через середину окружности

Большая из двух хорд расположена ближе к центру окружности.

Равные дугиПрямая проходящая через середину окружности

У равных дуг равны и хорды.

Параллельные хордыПрямая проходящая через середину окружности

Дуги, заключённые между параллельными хордами, равны.

Видео:Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

Теоремы о длинах хорд, касательных и секущих

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Прямая проходящая через середину окружности

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Прямая проходящая через середину окружности

Прямая проходящая через середину окружности

ФигураРисунокТеорема
Пересекающиеся хордыПрямая проходящая через середину окружности
Касательные, проведённые к окружности из одной точкиПрямая проходящая через середину окружности
Касательная и секущая, проведённые к окружности из одной точкиПрямая проходящая через середину окружности
Секущие, проведённые из одной точки вне кругаПрямая проходящая через середину окружности

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Прямая проходящая через середину окружности

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Прямая проходящая через середину окружности

Прямая проходящая через середину окружности

Пересекающиеся хорды
Прямая проходящая через середину окружности
Касательные, проведённые к окружности из одной точки
Прямая проходящая через середину окружности
Касательная и секущая, проведённые к окружности из одной точки
Прямая проходящая через середину окружности
Секущие, проведённые из одной точки вне круга
Прямая проходящая через середину окружности
Пересекающиеся хорды
Прямая проходящая через середину окружности

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Прямая проходящая через середину окружности

Касательные, проведённые к окружности из одной точки

Прямая проходящая через середину окружности

Прямая проходящая через середину окружности

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Касательная и секущая, проведённые к окружности из одной точки

Прямая проходящая через середину окружности

Прямая проходящая через середину окружности

Прямая проходящая через середину окружности

Секущие, проведённые из одной точки вне круга

Прямая проходящая через середину окружности

Прямая проходящая через середину окружности

Прямая проходящая через середину окружности

Видео:#207. Окружность девяти точек | лемма о трезубце | ортотреугольник | прямая ЭйлераСкачать

#207. Окружность девяти точек | лемма о трезубце | ортотреугольник | прямая Эйлера

Доказательства теорем о длинах хорд, касательных и секущих

Теорема 1 . Предположим, что хорды окружности AB и CD пересекаются в точке E (рис.1).

Прямая проходящая через середину окружности

Прямая проходящая через середину окружности

Тогда справедливо равенство

Прямая проходящая через середину окружности

Доказательство . Заметим, что углы BCD и BAD равны как вписанные углы, опирающиеся на одну и ту же дугу. Углы BEC и AED равны как вертикальные. Поэтому треугольники BEC и AED подобны. Следовательно, справедливо равенство

Прямая проходящая через середину окружности

откуда и вытекает требуемое утверждение.

Теорема 2 . Предположим, что из точки A , лежащей вне круга, к окружности проведены касательная AB и секущая AD (рис.2).

Прямая проходящая через середину окружности

Прямая проходящая через середину окружности

Точка B – точка касания с окружностью, точка C – вторая точка пересечения прямой AD с окружностью. Тогда справедливо равенство

Прямая проходящая через середину окружности

Доказательство . Заметим, что угол ABC образован касательной AB и хордой BC , проходящей через точку касания B . Поэтому величина угла ABC равна половине угловой величины дуги BC . Поскольку угол BDC является вписанным углом, то величина угла BDC также равна половине угловой величины дуги BC . Следовательно, треугольники ABC и ABD подобны (угол A является общим, углы ABC и BDA равны). Поэтому справедливо равенство

Прямая проходящая через середину окружности

откуда и вытекает требуемое утверждение.

Теорема 3 . Предположим, что из точки A , лежащей вне круга, к окружности проведены секущие AD и AF (рис.3).

Прямая проходящая через середину окружности

Прямая проходящая через середину окружности

Точки C и E – вторые точки пересечения секущих с окружностью. Тогда справедливо равенство

Прямая проходящая через середину окружности

Доказательство . Проведём из точки A касательную AB к окружности (рис. 4).

Прямая проходящая через середину окружности

Прямая проходящая через середину окружности

Точка B – точка касания. В силу теоремы 2 справедливы равенства

Прямая проходящая через середину окружности

откуда и вытекает требуемое утверждение.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Теорема о бабочке

Теорема о бабочке . Через середину G хорды EF некоторой окружности проведены две произвольные хорды AB и CD этой окружности. Точки K и L – точки пересечения хорд AC и BD с хордой EF соответственно (рис.5). Тогда отрезки GK и GL равны.

Прямая проходящая через середину окружности

Прямая проходящая через середину окружности

Доказательство . Существует много доказательств этой теоремы. Изложим доказательство, основанное на теореме синусов, которое, на наш взгляд, является наиболее наглядным. Для этого заметим сначала, что вписанные углы A и D равны, поскольку опираются на одну и ту же дугу. По той же причине равны и вписанные углы C и B . Теперь введём следующие обозначения:

Прямая проходящая через середину окружности

Прямая проходящая через середину окружности

Воспользовавшись теоремой синусов, применённой к треугольнику CKG , получим

Прямая проходящая через середину окружности

Прямая проходящая через середину окружности

Воспользовавшись теоремой синусов, применённой к треугольнику AKG , получим

Прямая проходящая через середину окружности

Прямая проходящая через середину окружности

Воспользовавшись теоремой 1, получим

Прямая проходящая через середину окружности

Прямая проходящая через середину окружности

Воспользовавшись равенствами (1) и (2), получим

Прямая проходящая через середину окружности

Прямая проходящая через середину окружности

Прямая проходящая через середину окружности

Прямая проходящая через середину окружности

Прямая проходящая через середину окружности

Проводя совершенно аналогичные рассуждения для треугольников BGL и DGL , получим равенство

Прямая проходящая через середину окружности

откуда вытекает равенство

что и завершает доказательство теоремы о бабочке.

Видео:№200. Докажите, что любая точка прямой, которая проходит через центр окружности, описанной около мноСкачать

№200. Докажите, что любая точка прямой, которая проходит через центр окружности, описанной около мно

Окружность. Относительное взаимоположение окружностей.

Если две окружности имеют только одну общую точку, то говорят, что они касаются.

Если же две окружности имеют две общие точки, то говорят, что они пересекаются.

Трех общих точек две не сливающиеся окружности иметь не могут, потому, что в противном случае через три точки можно было бы провести две различные окружности, что невозможно.

Будем называть линией центров прямую, проходящую через центры двух окружностей (например, прямую OO1).

Теорема.

Если две окружности имеют общую точку по одну сторону от линии центров, то они имеют общую точку и по другую сторону от этой линии, т.е. такие окружности пересекаются.

Пусть окружности O и O1 имеют общую точку A, лежащую вне линии центров OO1. Требуется доказать, что эти окружности имеют еще общую точку по другую сторону от прямой OO1.

Опустим из A на прямую OO1 перпендикуляр AB и продолжим его на расстояние BA1, равное AB. Докажем теперь, что точка A1 принадлежит обеим окружностям. Из построения видно, что точки O и O1 лежат на перпендикуляре, проведенном к отрезку AA1 через его середину. Из этого следует, что точка O одинаково удалена от A и A1. То же можно сказать и о точке O1. Значит обе окружности, при продолжении их, пройдут через A1.Таким образом, окружности имеют две общие точки : A (по условию) и A1 (по доказанному). Следовательно, они пересекаются.

Следствие.

Общая хорда (AA1) двух пересекающихся окружностей перпендикулярна к линии центров и делится ею пополам.

Теоремы.

1. Если две окружности имеют общую точку на линии их центров или на ее продолжении, то они касаются.

2. Обратно: если две окружности касаются, то общая их точка лежит на линии центров или на ее продолжении.

Признаки различных случаев относительного положения окружностей.

Пусть имеем две окружности с центрами O и O1, радиусами R и R1 и расстоянием между центрами d.

Эти окружности могут находиться в следующих 5-ти относительных положениях:

Прямая проходящая через середину окружности

1. Окружности лежат одна вне другой, не касаясь. В этом случае, очевидно, d > R + R1 .

2. Окружности имеют внешнее касание. Тогда d = R + R1, так как точка касания лежит на линии центров O O1.

3. Окружности пересекаются. Тогда d R + R1, потому что в треугольнике OAO1 сторона OO1 меньше суммы, но больше разности двух других сторон.

4. Окружности имеют внутреннее касание. В этом случае в d = R — R1, потому что точка касания лежит на продолжении линии OO1.

5. Одна окружность лежит внутри другой, не касаясь. Тогда, очевидно,

d R + R1, то окружности расположены одна вне другой, не касаясь.

2. Если d = R + R1, то окружности касаются извне.

3. Если d R — R1, то окружности пересекаются.

4. Если d = R — R1, то окружности касаются изнутри.

5. Если d R Е R1. Значит, все эти случаи исключаются. Остается один возможный, именно тот, который требовалось доказать. Таким образом, перечисленные признаки различных случаев относительно положения двух окружностей не только необходимы, но и достаточны.

Видео:№968. Напишите уравнение окружности с центром в точке А(0; 6), проходящей через точку В (-3; 2).Скачать

№968. Напишите уравнение окружности с центром в точке А(0; 6), проходящей через точку В (-3; 2).

Окружность и круг — определение и вычисление с примерами решения

Содержание:

Пусть в природе не существовало бы ни одного круга или треугольника, и все-таки истины, доказанные Евклидом, навсегда сохранили бы свою достоверность и очевидность.

Раньше вы знакомились с основными геометрическими фигурами, устанавливали особенности этих фигур и их взаимное расположение. Но на практике довольно часто приходится решать «обратную» задачу — по определенным особенностям находить фигуру, имеющую их. Именно таково содержание задач на построение, которые будут рассматриваться в этом разделе.

Еще в работах древнегреческих математиков описаны задачи на построение и методы их решения.

Многие из этих задач составляют классику евклидовой геометрии. Кроме практической ценности, такие задачи представляют значительный исследовательский интерес, поскольку в ходе их решения определяются новые особенности построенных фигур.

Окружность и круг:

Определение. Окружностью называется геометрическая фигура, состоящая из всех точек плоскости, равноудаленных от данной точки, которая называется центром окружности.

Радиусом окружности называется отрезок, соединяющий центр окружности с любой точкой на окружности (или длина этого отрезка).

Хордой окружности называется отрезок, соединяющий две точки окружности.

Диаметром окружности называется хорда, проходящая через центр окружности.

Дугой окружности называется часть окружности, ограниченная двумя точками.

Прямая проходящая через середину окружности

На рисунке 48 точка О — центр, отрезок ОС — радиус окружности. Радиус обозначают буквой R (или Прямая проходящая через середину окружности

Прямая проходящая через середину окружности

На рисунке 49 изображены: хорда ЕН, дуга КМ (обозначается: Прямая проходящая через середину окружности), диаметр АВ. Диаметр состоит из двух радиусов. Поэтому диаметры окружности равны между собой. Диаметр АВ состоит из радиусов OA и ОВ, откуда Прямая проходящая через середину окружностиДиаметр обозначают буквой D (или d). Тогда Прямая проходящая через середину окружности

Любые две точки окружности разбивают ее на две дуги, которые дополняют друг друга до окружности. Эти дуги так и называются — дополнительными. Чтобы различать такие дуги, их иногда обозначают тремя буквами. На рисунке 49 дуги АКМ и АНМ — дополнительные.

Определение. Кругом называется часть плоскости, ограниченная окружностью.

Прямая проходящая через середину окружности

Точки окружности также принадлежат кругу (рис. 50). Поэтому центр, радиус, хорда и диаметр у круга те же, что и у его окружности.

Часть круга, заключенная между двумя радиусами, называется сектором. Часть круга, заключенная между дугой окружности и хордой, соединяющей концы дуги, называется сегментом (рис. 51). Два радиуса разбивают круг на два сектора, хорда разбивает круг на два сегмента.

Прямая проходящая через середину окружности

Полуокружностью называется дуга окружности, концы которой являются концами диаметра. Полукругом называется часть круга, ограниченная полуокружностью и диаметром, соединяющим концы полуокружности. На рисунке 49 дуга АКВ — полуокружность, сегмент АКВ — полукруг.

Угол, вершина которого находится в центре окружности, называется центральным углом. На рисунке 51 Прямая проходящая через середину окружности— центральный угол.

Окружности (круги) равны, если равны их радиусы.

Две окружности могут не иметь общих точек, могут пересекаться в двух точках или касаться друг друга в одной точке. Окружности разного радиуса с общим центром называются концентрическими. Часть плоскости между двумя концентрическими окружностями называется кольцом (рис. 52).

Прямая проходящая через середину окружности

Видео:Окружность. 7 класс.Скачать

Окружность. 7 класс.

Определение окружности и круга

Окружность — это замкнутая линия на плоскости, все точки которой находятся на одинаковом расстоянии от одной точки — центра окружности.

Круг — это внутренняя часть плоскости, ограниченная окружностью.

Размеры окружности и круга определяются их радиусом — отрезком, который соединяет центр с точкой на окружности (рис. 3).

Прямая проходящая через середину окружности

В математике «окружность» и «круг» — два различных, хотя и связанных между собой, понятия. Окружность, например, является моделью обруча, а круг — моделью крышки люка.
Прямая проходящая через середину окружности

Определение окружности и ее элементов

Пусть на плоскости отмечена точка О. Очевидно, что от точки О можно отложить бесконечное множество отрезков длиной R (рис. 162). Концы всех таких отрезков на плоскости образуют окружность — фигуру, уже известную из курса математики. Определение Окружностью называется геометрическая фигура, состоящая из всех точек плоскости, удаленных от данной точки (центра окружности) на одинаковое расстояние. Иначе говорят, что все точки окружности равноудалены от ее центра. Определение Кругом называется часть плоскости, ограниченная окружностью и содержащая ее центр. Иначе говоря, круг состоит из всех точек плоскости, удаленных от данной точки (центра круга) на расстояние, не превышающее заданного. На рисунке 163 заштрихованная часть плоскости — круг, ограниченный окружностью с тем же центром. Центр окружности и круга является точкой круга, но не является точкой окружности.

Прямая проходящая через середину окружности

Определение Радиусом окружности (круга) называется расстояние от центра окружности до любой ее точки. Радиусом также называется любой отрезок, соединяющий точку окружности с ее центром. На рисунке 162 Прямая проходящая через середину окружности— радиусы окружности с центром О. Как правило, радиус обозначается буквой R (или r ).

Прямая проходящая через середину окружности

Радиус — от латинского «радиус» — луч, спица

Хорда — от греческого «хорда» — струна, тетива

Диаметр — от греческого «диа» — насквозь и «метрео» — измеряющий насквозь; другое значение этого слова — поперечник

Радиусом также называется любой отрезок, соединяющий точку окружности с ее центром. На рисунке 162 Прямая проходящая через середину окружности— радиусы окружности с центром О. Как правило, радиус обозначается буквой R (или r ).

Определение:

Хордой называется отрезок, соединяющий две точки окружности.

Диаметром называется хорда, проходящая через центр окружности.

На рисунке 164 изображены две хорды окружности, одна из которых является ее диаметром. Обычно диаметр обозначают буквой d. Очевидно, что диаметр вдвое больше радиуса, то есть d = 2R.

Прямая проходящая через середину окружности

Построение окружности выполняют с помощью циркуля.

Видео:Окружность данного радиуса, проходящей через две заданные точкиСкачать

Окружность данного радиуса, проходящей через две заданные точки

Что такое окружность и круг

Окружность — это фигура, состоящая из всех точек плоскости, равноудален ных от данной точки. Эту точку называют центром окружности.

Отрезок, соединяющий любую точку окружности с ее центром, называют ради усом. Отрезок, соединяющий две против вольные точки окружности, — хорда окружности. Хорда, проходящая через центр окружности, — диаметр (рис. 200). Каждый диаметр окружности состоит’ из двух радиусов, поэтому его длина вдвое больше длины радиуса. Длина хорды, не проходящей через центр окружности, меньше длины диаметра, (Почему?)

Прямая проходящая через середину окружности

Окружность на бумаге описывают МА и MB — перпендикуляры на ОА и ОВ (см. рис. 216), то Прямая проходящая через середину окружности(по гипотенузе и острому углу). Поэтом МА = MB, следовательно, точка М равноудалена от сторон данного угла.

Геометрическим местом точек угла, равноудаленных от его сторон, является биссектриса этого угла.

Здесь имеются в виду углы меньше развернутого.

Верно ли, что геометрическим местом точек, равноудален-ных от сторон угла, является биссектриса этого угла? Нет. Когда в планиметрии говорят о геометрическом месте точек, не уточняя, о каких именно точках идет речь, то имеют в виду точки плоскости, которой принадлежит данная фигура. При таком условии геометрическим местом точек, равноудаленных от ф сторон угла, является объединение биссектрисы I данного угле g и всех точек некоего другого угла, показанного на рисунке 217,

Прямая проходящая через середину окружности

Ведь каждая точка угла КОР также равноудалена от сторон донного угла АО В (речь идет об углах меньше развернутого).

Когда мы говорим, что геометрическим местом точек, равноудаленных от концов отрезка, является серединный перпендикуляр этого отрезка, то мы имеем в виду, что речь идет о геометрическом месте точек плоскости, на которой лежит отрезок.

А геометрическим местом точек пространства, равноудаленных от концов отрезка, является некая плоскость (мал. 218).

Подумайте, как расположена эта плоскость относительно денного отрезка.

Геометрические места точек пространства изучают в старших классах.

Пример №3

Докажите, что серединные перпендикуляры двух сторон треугольника пересекаются.

Решение:

Пусть n и m— серединные перпендикуляры сторон ВС и АВ треугольника (рис. 219). Докажем, что они не могут быть параллельны. Доказывать будем от противного. Допустим, что n || m. Тогда прямая, перпендикулярная к п, должна быть перпендикулярной и к m, то есть Прямая проходящая через середину окружности. Но по условию Прямая проходящая через середину окружностиА две прямые, перпендикулярные к третьей прямой, параллельны. Таким образом, из допущения, что п || т, следует параллельность сторон АВ и ВС треугольника. А этого не может быть. Поэтому прямые ли т не могут быть параллельными. Они пересекаются.

Прямая проходящая через середину окружности

Окружность и треугольник

Окружность и треугольник могут не иметь общих точек или иметь 1, 2, 3, 4, 5, 6 общих точек (соответствующие рисунки выполните самостоятельно). Заслуживаем внимания случаи, когда окружность проходит через все три вершины треугольника или когда она касается всех и сторон треугольника. Рассмотрим такие случаи подробнее.

Описанная окружность

Окружность называется описанной около треугольника, если она проходит через все вершины треугольника (рис. 223).

Прямая проходящая через середину окружности

Теорема: Около каждого треугольника можно описать только одну окружность. Ее центром является точка пересечения серединных перпендикуляров двух сторон треугольника.

Пусть ABC — произвольный треугольник (рис. 224). Найдем точку, равноудаленную от вершин А, В и С.’ Метрическое место точек, равноудаленных от А и В, — серединный перпендикуляр m отрезка АВ; геометрическое место точек, равноудаленна от В и С, — серединный перпендикуляр n отрезка ВС. Эти два серединных перпендикуляра не могут быть параллельными, они пересекаются в точке О. А она равноудалена от Н и С. Следовательно, ОА = ОВ = ОС, поэтому О — центр окружности, описанной около ABC.

Для каждого отрезка АВ существует серединный перпендикуляр, и только один, а для ВС — серединный перпендикуляр и только один. И точка их пересечения существует всегда, только одна. Таким образом, около каждого треугольника можно описать одну окружность, и только одну. Прямая проходящая через середину окружности

Прямая проходящая через середину окружности

  • Серединные перпендикуляры всех трех сторон произвольного треугольника проходят через одну и ту же точку.
  • Через любые три точки, не лежащие на одной прямой, можно провести окружность, и только одну.

Из доказанной теоремы следует cnocof построения окружности, описанной около треугольника. Чтобы описать около треугольника ABC окружность, достаточно:

  1. построить серединные перпендикуляры двух сторон данного треугольника;
  2. определить точку О, в которой эти серединные перпендикуляры пересекаются;
  3. ) из центра О провести окружность радиуса ОА.

Центр окружности, описанной около треугольника, может лежать во внутренней или внешней области данного треугольника либо на его сторон (рис. 225).

Прямая проходящая через середину окружности

Вписанная окружность

Окружность называется вписанной в треугольник если она касается всех сторон треугольника (рис. 226). Центр окружности, вписанной в треугольник, лежим’ и внутренней области этого треугольник.

Прямая проходящая через середину окружности

Теорема: В каждый треугольник можно вписан только одну окружность. Ее центром является точка пересечения двух биссектрис треугольника.

Доказательство:

Пусть ABC — произвольный треугольник. Определим точи О, равноудаленную от всех его сторон (рис. 227). Геометрическое место точек, лежащих внутри угла А и равноудаленных второй АВ и АС, — биссектриса l угла А. Гtjметрическое место точек, равноудаленных от сторон АВ и ВС и лежащих внутри угла В, — биссектриса t угла B. Эти две биссектрисы обязательно Пересекаются (докажите это!). Точка U, в которой пересекаются биссектрисы l и t, равноудалена от всех трех сторон данного треугольника. Следовательно, точка О — центр окружности, Вписанной в треугольник АВС. Прямая проходящая через середину окружности

Прямая проходящая через середину окружности

В каждом треугольнике все три биссектрисы пересекаются в одной точке.

Из доказанной теоремы следует способ построения окружности, вписанной в треугольник. Чтобы вписать в данный треугольник окружность, достаточно:

  1. провести две его биссектрисы;
  2. из точки их пересечения О опустить перпендикуляр OL на произвольную сторону треугольника;
  3. из центра О радиуса OL описать окружность. Она касается каждой стороны треугольника, следовательно, является вписанной в данный треугольник.

Теорема: Центром окружности, описанной около прямоугольного треугольника, является середина его гипотенузы.

Пусть ABC — произвольный треугольник с прямым углом С, t— серединный перпендикуляр катета АС, пересекающий гипотенузу АВ в точке О (рис. 228).

Поскольку точка О лежит на серединном перпендикуляре отрезка АС, то Прямая проходящая через середину окружностиПрямая проходящая через середину окружности. Прямая проходящая через середину окружности

Прямая проходящая через середину окружности

точка О—середина гипотенузы АВ, равноудаленная от всех вершин треугольника. Таким образом, окружность с центром О и радиусом ОА проходит через все вершины данного треугольника.

Диаметр окружности, описанной около прямоугольного треугольника, равен его гипотенузе.

Теорема: Из любой точки окружности ее Диаметр, не выходящий из этой точки, виден под прямым углом.

Доказательство:

Пусть АВ — произвольный диаметр окружности с центром О, а С— произвольная точка окружности, отличная от А и В (рис. 229). Покажем, чтоПрямая проходящая через середину окружностиПосколькуПрямая проходящая через середину окружностиПрямая проходящая через середину окружностиПрямая проходящая через середину окружностиПрямая проходящая через середину окружности

Прямая проходящая через середину окружности

Геометрическим местом точек плоскости, из которых отрезок АВ виден под прямым углом, является окружность диаметра АВ. На самом деле этому ГМТ точки А и В не принадлежат. Подробнее об этом вы узнаете в старших классах.

Пример №4

Найдите радиус окружности, описанной около прямоугольного треугольника с гипотенузой 6 см.

Решение:

Диаметр окружности, описанной около прямоугольного треугольника, является его гипотенузой. Радиус вдвое меньше: 3 см.

Пример №5

Докажите, что диаметр окружности, вписанной в прямоугольный треугольник с катетами а и Ь и гипотенузой с, равен a + b — c.

Решение:

Пусть в Прямая проходящая через середину окружностиугол С прямой, а К, Р, Т — точки касания вписанной в треугольник окружности (рис. 230). Поскольку АР =АТ и ВК = ВТ, то АС + ВС — АВ = PC + СК = 2r, или 2r = a + b- с.

Прямая проходящая через середину окружности

Геометрические построения

Пользуясь линейкой’ и циркулем, моле но выполнить много геометрических построений, то есть начертить геометрические фигуры. Рассмотрим сначала, как выполняются самые простые геометрические построения.

Пример №6

Постройте треугольник по данным сторонам.

Решение:

Пусть даны три отрезки а, b и с (рис. 232). Нужно построить, треугольник, стороны которого были бы равны этим отрезкам. С помощью линейки проводим произвольную прямую, обозначаем на ней произвольную точку В и циркулем откладываем на этой прямой отрезок ВС = а. Раствором циркуля, равным с описываем дугу окружности с центром В. С той же стороны от прямой СВ описываем дугу окружности радиуса b с центром С. Точку пересечения А этих дуг соединяем отрезками с С и В. Треугольник ABC — именно тот, который требовалось построить, так как его стороны ВС, АС и АВ равны данным отрезкам.

Прямая проходящая через середину окружности

Если построенные дуги не пересекаются, требуемый треугольник построить невозможно. Это бывшие в том случае, когда один из данных отрезков больше суммы двух других или равен их сумме.

Пример №7

Постройте угол, равный данному углу.

Решение:

Пусть дан угол АОВ и требуется построить угол КРТ, равный Прямая проходящая через середину окружности(рис. 233). Проводим луч РТ и дуг* равных радиусов с центрами О и Р. Пусть одна из этих д пересекает стороны угла АОВ в точках А и В, а другая луч РТ в точке Т. Дальше раствором циркуля, равным А/ описываем третью дугу с центром Т. Если она пересекает другую дугу в точке К, проводим луч РК. Угол КРТ — то 1 Будем считать, что линейка без делений.

Прямая проходящая через середину окружности

который требовалось построить. Ведь треугольники КРТ и АОВ равны (по трем сторонам), поэтому Прямая проходящая через середину окружности

Пример №8

Постройте биссектрису данного угла.

Решение:

Пусть АОВ — данный угол (рис. 234). Произвольным раствором циркуля опишем дугу с центром О. Пусть А и В — точки пересечения этой дуги с лучами О А и ОВ. Из центров А и В опишем дуги такими же радиусами. Если D — точка пересечения этих дуг, то луч OD — биссектриса угла АОВ.

Действительно, Прямая проходящая через середину окружности(по трем сторонам). Поэтому Прямая проходящая через середину окружности

Прямая проходящая через середину окружности

Пример №9

Разделите данный отрезок пополам.

Решение:

Пусть АВ — данный отрезок (рис. 235). Из точек А и В радиусом АВ описываем дуги. Они пересекутся в неких точках С и D.

Прямая CD точкой М разделит данный отрезок пополам.

Действительно, по трем сторонам Прямая проходящая через середину окружности, поэтому Прямая проходящая через середину окружности Прямая проходящая через середину окружностиПо первому признаку равенства треугольников Прямая проходящая через середину окружностиПрямая проходящая через середину окружности. Итак, AM = ВМ.

Прямая проходящая через середину окружности

Пример №10

Через данную точку Р проведите прямую, перпендикулярную и данной прямой а.

Решение:

В зависимости от того, лежит или не лежит точка Р на прямой а, задачу можно решить, как показа но на рисунках 236 и 237. Опишите и аргументируйте эти построения самостоятельно.

Прямая проходящая через середину окружностиПрямая проходящая через середину окружности

Пример №11

Через точку Р, не лежащую на прямой АВ, проведите прямую, параллельную прямой АВ.

Решение:

Через точку Р и про из вольную точку А прямой АВ проводим прямую АТ (рис. 238). Строим угол ТРМ, равный углу РАВ, так, что бы эти углы стали соответственны ми при прямых РК, АВ и секущей АР. Построенная таким образом пря мая РК удовлетворяет задачу: она проходит через данную точку Р и параллельна прямой АВ, поскольку Прямая проходящая через середину окружности

Прямая проходящая через середину окружности

Геометрическими построениями часто приходилось заниматься многим людям. Еще в доисторические времена мастера, изготавливающие колеса к колесницам, умели делить окружность на несколько равных частей. В наше время выполнять такие построения приходится специалистам, проектирующим или изготавливающим шестеренки, дисковые пилы (рис. 239), турбины и различные роторные механизмы. Как бы вы разделили окружность, например, на 5, 6 или 7 равных частей?
Прямая проходящая через середину окружности

Основные чертежные инструменты — линейка и циркуль — были известны еще несколько тысячелетий назад.

Слово линейка происходит от слова линия, которое на латинском языке сначала означало «льняная нитка», «черта, проведенная ниткой, бечевкой» (производное от лат. Плит — лен). Слово циркуль тоже латинского происхождения, первоначально слово циркулюс означало «окружность, круг», а потом стало означать инструмент, с помощью которого проводят окружности.

В Древней Греции линейку и циркуль признавали единственными приборами геометрических построений. Задачу на построение считали решенной, если все построения в ней выполнялись только с помощью линейки и циркуля. Сейчас специалисты при выполнении построений пользуются угольником, транспортиром, рейсмусом, рейсшиной и другими чертежными приспособлениями.

Пример №12

Разделите данную дугу окружности на две равные части.

Решение:

Пусть дана дуга АВ окружности с центром О (рис. 240). Представим угол АОВ и проведем его биссектрису ОК. Треугольники АОК и КОВ равны, поэтому и дуги АК и КВ равны.

Прямая проходящая через середину окружности

Пример №13

Постройте угол вдвое больше данною.

Решение:

Пусть АОВ — данный угол (рис. 241) Опишем дугу окружности с центром О Если она пересечет стороны данного угла в точках А и В, из В как из центра сделаем засечку ВС = ВА и проведем луч ОС. Угол АОС вдвое больше Прямая проходящая через середину окружности

Прямая проходящая через середину окружности

Задачи на построение

С геометрическими построениями имеют дело различные специалисты. Геометрические построении выполняют чертежники, архитекторы, конструкторы, топографы, геодезисты, штурманы. Разные геометрические фигуры строят также: слесарь — на жести, столяр — на доске, портной— на ткани, садовник — на земле.

В задаче на построение требуется построить геометрическую фигуру, которая должна удовлетворять определенные условия. В геометрии построения выполняют чаще всего с помощь к линейки и циркуля. Условимся: если в задаче не сказано, какими инструментами следует выполнить построение, то имеются в виду только линейка (без делений) и циркуль.

Более сложные задачи на построение часто решают методом геометрических мест. Пусть, например, в задаче требуете!’ найти точку X, удовлетворяющую два условия. Если первое условие удовлетворяют точки фигуры К, а второе — точки фигуры Р, то X должна принадлежать каждой из этих фигур. Тс есть X — точка пересечения фигур К и Р.

Пример №14

Постройте прямоугольный треугольник по да» ному катету а и гипотенузе с (рис. 243).

Решение:

Строим прямой угол АСВ, на его стороне откладываем отрезок СВ = а. Точки С и В — две вершины треугольника, который требуется построить. Третья верши» должна лежать, во-первых, на луче СА, во-вторых, на pfti стоянии с от В, то есть на окружности радиуса с с центр В. Если эту окружность пересекает луч СА в точке А, 1 треугольник ABC — именно тот, который требовалось не строить. Ведь его угол С прямой, ВС = а, ВА = с.

Прямая проходящая через середину окружности

Второй способ (рис. 244). Откладываем отрезок АВ = с и проводим окружность диаметра АВ — ГМТ, из которых АВ виден под прямым углом. Дальше строим полуокружность радиуса а с центром В — ГМТ, удаленных от В на расстояние а и лежащих по одну сторону от прямой АВ. Если два ГМТ пересекаются в точке С, то треугольник ABC — именно тот, который требовалось построить.

Составные части решения задачи на построение — анализ, построение, доказательство и исследование. В анализе ищут способ решения задачи, в построении выполняется само построение, в доказательстве обосновывается правильность выполненного построения, в исследовании выясняется, сколько решений имеет задача.

Пример №15

Постройте треугольник по данной стороне, прилежащему к ней углу и сумме двух других сторон (рис. 245).

Решение:

Анализ. Допустим, что требуемый треугольник ABC построен. Его сторона с и угол А = а — даны. Дан также отрезок, равный сумме сторон а и b. По данным отрезкам с и а + b и углу А между ними можно построить A ABD. Вершиной С искомого треугольника будет такая точка отрезка AD, для которой CD = СВ. Следовательно, точка С должна лежать и на серединном перпендикуляре отрезка BD.

Построение. По двум данным отрезкам и углу между ними строим Прямая проходящая через середину окружности, после чего проводим серединный перпендикуляр I отрезка BD. Пусть прямая I пересекает отрезок АВ в точке С. Проводим отрезок СВ. Треугольник ABC — такой, который требовалось построить.

Прямая проходящая через середину окружности

Доказательство:

В треугольнике Прямая проходящая через середину окружностипо построению. АС + СВ — АС + CD — а + b. Следовательно, Прямая проходящая через середину окружностиудовлетворяет все условия задачи.

Исследование. Задача имеет решение только при условии, что а + b > с.

Если задача несложная и способ ее решения известен, анализ можно не описывать. А в решении не обязательно выделять анализ, построение, доказательство и исследование.

В математике чаще всего имеют дело с задачами: на вычисление, на доказательство, на построение, на преобразование и на исследование. Геометрическими задачами на построение активно интересовались античные геометры. Допуская лишь классические построения (выполняемые только линейкой и циркулем), они исследовали, какие из построений можно вы-полнить, а какие невозможно. В частности, выясняли:

  1. можно ли любой угол разделить на три равные части;
  2. можно ли построить квадрат, площадь которого была бы равна площади данного круга;
  3. можно ли построить ребро такого куба, объем которого был бы в 2 раза больше объема данного куба.

Много столетий выдающиеся геометры пытались решить эти задачи и не смогли. Эти три классические задачи древности получили специальные названия:

  1. трисекция угла,
  2. 2квадратура круга,
  3. удвоение куба.

Последнюю задачу называют еще делосской задачей, связывая ее с древнегреческой легендой. согласно которой оракул бога Аполлона согласился спасти жителей острова Делос от чумы, если кубический жертовник в делосском храме заменят на жертовник такой же формы, но вдвое большего объема. Только почти через 2000 лет ученые убедились, что ни одну из этих трех задач с помощью лишь линейки и циркуля решить невозможно.

В настоящее время специалисты, которым приходится выполнять геометрические построения, пользуются не только линейкой и циркулем. С точки зрения классических методов такие построения приближенные. Но для практических нужд точности, которую обеспечивают приближенные методы, вполне достаточно

Пример №16

Найдите центр данной окружности.

Решение:

Обозначим на данной окружности три производные точки А, В и С (рис. 246).

Представим хорды АВ, ВС и проведем их серединные перпендикуляры n и m. Точка О, в которой пересекаются прямые n и m., — центр данной окружности. Ведь ОА = ОВ = ОС.

Прямая проходящая через середину окружности

Пример №17

Через данную точку проведите касательную к данной окружности.

Решение:

Если данная точка А лежит на окружности центра О (рис. 247, а), проводим луч ОА, потом — прямую АК, перпендикулярную к ОА. Прямая АК — касательная, которую и требовалось построить.

Если точка А лежит вне данной окружности центра О (рис. 247, б), то на диаметре ОА описываем окружность. Она пересечется с данной окружностью в двух точках К и Р. Прямые АК и АР — искомые касательные, поскольку Прямая проходящая через середину окружности(Из точек К и Р вспомогательной окружности ее диаметр ОМ виден под прямыми углами АКО и АРО.) В этом случае задача имеет два решения.

Прямая проходящая через середину окружности

Свойство диаметра, перпендикулярного хорде

Диаметр, перпендикулярный хорде, проходит через ее середину. Докажите.

Решение

Пусть СО — диаметр окружности с центром О, АВ — хорда этой окружности, Прямая проходящая через середину окружностиДокажем, что М — точка пересечения отрезков АВ и СD— середина отрезка АВ.

В случае, когда хорда АВ сама является диаметром, точка М совпадает с центром О и утверждение задачи очевидно. Пусть хорда АВ не является диаметром (рис. 165). Проведем радиусы OA и ОВ. Тогда в равнобедренном треугольнике АОВ высота ОМ является медианой. Итак, AM = ВМ, что и требовалось доказать.

Прямая проходящая через середину окружности

Докажите самостоятельно еще одно утверждение (опорное): диаметр окружности, проведенной через середину хорды, не являющейся диаметром, перпендикулярен этой хорде.

Касательная к окружности

Определение и свойство касательной

Любая прямая, проходящая через точки окружности, называется секущей; ее отрезок, лежащий внутри окружности, является хордой. На рисунке 167 хорда CD — отрезок секущей b . Рассмотрим теперь прямую, имеющую с окружностью только одну общую точку.

Определение:

Касательной к окружности называется прямая, имеющая с окружностью единственную общую точку. Общая точка касательной и окружности называется точкой касания.

На рисунке 167 прямая а является касательной к окружности с центром О. Иначе говоря, прямая а касается окружности с центром О в точке А . Прямая проходящая через середину окружности

Определим взаимное расположение касательной и радиуса окружности, проведенного в точку касания.

Теорема (свойство касательной)

Касательная к окружности перпендикулярна радиусу, проведенному в точку касания.

Доказательство:

Пусть прямая а касается окружности с центром О в точке А (рис. 168). Докажем, что Прямая проходящая через середину окружностиПрименим метод доказательства от противного. Прямая проходящая через середину окружности

Пусть отрезок OA не является перпендикуляром к прямой а. Тогда, по теореме о существовании и единственности перпендикуляра к прямой, из точки О можно провести перпендикуляр ОB к прямой а . На луче АВ от точки В отложим отрезок ВС, равный АВ , и соединим точки О и С . Поскольку по построению отрезок ОВ — медиана и высота треугольника АОС, то этот треугольник равнобедренный с основанием АС, то есть OA = ОС . Таким образом, расстояние между точками О и С равно радиусу окружности, и, по определению радиуса, точка С должна лежать на данной окружности. Но это противоречит определению касательной, поскольку А — единственная общая точка окружности с прямой а. Из этого противоречия следует, что наше предположение неверно, то есть OA Прямая проходящая через середину окружности. Теорема доказана.

Признак касательной

Докажем теорему, обратную предыдущей.

Теорема: (признак касательной)

Если прямая проходит через точку окружности перпендикулярно радиусу, проведенному в эту точку, то она является касательной к окружности.

Доказательство:

Пусть прямая а проходит через точку А, лежащую на окружности с центром О, причем Прямая проходящая через середину окружности. Докажем, что а — касательная к окружности. Согласно определению касательной, нам необходимо доказать, что окружность имеет с прямой а единственную общую точку. Применим метод доказательства от противного.

Пусть прямая а имеет с окружностью общую точку В , отличную от А (рис. 169). Тогда из определения окружности ОА = ОВ как радиусы, то есть треугольник АОВ равнобедренный с основанием АВ. По свойству углов равнобедренного треугольника Прямая проходящая через середину окружности, что противоречит теореме о сумме углов треугольника.

Следовательно, точка А — единственная общая точка окружности и прямой а, значит, прямая а — касательная к окружности.

Прямая проходящая через середину окружности

Свойство отрезков касательных

Пусть даны окружность с центром О и точка А, не принадлежащая кругу, ограниченному данной окружностью (рис. 170).

Через точку А можно провести две касательные к данной окружности. Отрезки, соединяющие данную точку А с точками касания, называют отрезками касательных, проведенных из точки А к данной окружности. На рисунке 170 АВ и АС — отрезки касательных, проведенных к окружности из точки А .

Опорная задача

Отрезки касательных, проведенных из данной точки к окружности, равны. Докажите.

Решение

Пусть АВ и АС — отрезки касательных, проведенных к окружности с центром О из точки А (рис. 170). Рассмотрим треугольники АОВ и АОС. По свойству касательной Прямая проходящая через середину окружностито есть эти треугольники являются прямоугольными с общей гипотенузой АО и равными катетами ОВ = ОС как радиусы окружности). Следовательно, Прямая проходящая через середину окружностипо гипотенузе и катету, откуда АВ = АС. Прямая проходящая через середину окружности

Касание двух окружностей

Определение:

Две окружности, имеющие общую точку, касаются в этой точке, если они имеют в ней общую касательную.

Общая точка двух окружностей в таком случае называется точкой касания окружностей.

Различают два вида касания окружностей: внутреннее и внешнее.

Касание окружностей называется внутренним, если центры окружностей лежат по одну сторону от общей касательной, проведенной через точку касания (рис. 171, а);

Касание окружностей называется внешним, если центры окружностей лежат по разные стороны от общей касательной, проведенной через точку касания (рис. 171, б).

Прямая проходящая через середину окружности

Рис. 171 Касание двух окружностей. 1. внутреннее; 2. внешнее.

По свойству касательной радиусы данных окружностей, проведенные в точку касания, перпендикулярны общей касательной. Из теоремы о существовании и единственности прямой, перпендикулярной данной, следует, что центры касающихся окружностей и точка касания окружнос тей лежат на одной прямой.

Касающиеся окружности имеют единствен ную общую точку — точку касания.

Если данные окружности имеют радиусы R и r (R > r), то расстояние между центрами окружностей равно R-r в случае внутреннего касания и R+r в случае внешнего касания.

Задачи на построение

Что такое задачи на построение?

Задачи на построение представляют собой отдельный класс геометрических задач, решение которых подчиняется определенным правилам. Цель решения этих задач — построение геометрических фигур с заданными свойствами с помощью чертежных инструментов. Если в условии задачи нет специальных примечаний, то имеются в виду построения с помощью циркуля и линейки. С помощью линейки можно провести:

  • произвольную прямую;
  • прямую, проходящую через данную точку;
  • прямую, проходящую через две данные точки.

Заметим, что никаких других построений линейкой выполнять нельзя. В частности, с помощью линейки нельзя откладывать отрезки заданной длины.

Циркуль — от латинского «циркулус» — окружность, круг.

С помощью циркуля можно:

  • провести окружность (часть окружности) произвольного или заданного радиуса с произвольным или заданным центром;
  • отложить от начала данного луча отрезок заданной длины.

Кроме того, можно отмечать на плоскости точки и находить точки пересечения прямых и окружностей.

Все перечисленные операции называют элементарными построениями, а решить задачу на построение — это значит найти последовательность элементарных построений, после выполнения которых искомая фигура считается построенной, и доказать, что именно эта фигура удовлетворяет условию задачи.

Итак, решение задач на построение заключается не столько в самом построении фигуры, сколько в нахождении способа построения и доказательстве того, что полученная фигура искомая.

Основные задачи на построение

Если каждый шаг построений описывать полностью, решение некоторых задач может оказаться довольно громоздким. С целью упрощения работы выделяют несколько важнейших задач, которые считаются основными и не детализируются каждый раз при решении более сложных задач.

Пусть даны отрезки длиной а , b и с . Построим треугольник со сторонами, b и с.

Проведем произвольный луч и отметим на нем точку А . Раствором циркуля, равным а , построим окружность с центром А . Пусть В — точка пересечения этой окружности с лучом.

Раствором циркуля, равным b , опишем окружность с центром А , а раствором циркуля, равным с ,— окружность с центром В . Пусть С — точка пересечения этих окружностей.

Проведем отрезки АС и ВС. По построению треугольник ABC имеет стороны длиной а , b и с, то есть треугольник ABC искомый 1 .

1 По данным задачи можно построить четыре разных треугольника с общей стороной АВ. По третьему признаку эти треугольники равны, то есть совмещаются наложением. В таких случаях решением задачи считают любой из этих равных треугольников.

Отметим, что эта задача имеет решение при условии, что длины отрезков а , b и с удовлетворяют неравенству треугольника.

С помощью описанных операций несложно решить задачу о построении угла, равного данному неразвернутому углу А. Для этого достаточно отложить на сторонах данного угла А отрезки АВ и АС и построить треугольник, равный треугольнику ABC.

Построение треугольника с данными сторонами
Прямая проходящая через середину окружности
Прямая проходящая через середину окружности
Прямая проходящая через середину окружности
Прямая проходящая через середину окружности
Построение биссектрисы угла
Прямая проходящая через середину окружностиПусть дан неразвернутый угол с вершиной А . Построим его биссектрису.
Прямая проходящая через середину окружностиС помощью циркуля построим окружность произвольного радиуса с центром А . Пусть В к С — точки пересечения этой окружности со сторонами данного угла.
Прямая проходящая через середину окружностиПостроим окружности того же радиуса с центрами В и С . Пусть D — точка пересечения этих окружностей.
Прямая проходящая через середину окружностиПроведем луч AD. По построению Прямая проходящая через середину окружности Прямая проходящая через середину окружности(по третьему признаку). Отсюда Прямая проходящая через середину окружности, то есть AD — биссектриса данного угла А .

Построим окружность произвольного радиуса с центром О. Пусть А и B — точки пересечения этой окружности с прямой а .

Построение перпендикулярной прямой
Прямая проходящая через середину окружностиПусть даны прямая а и точка О . Построим прямую, проходящую через точку О и перпендикулярную прямой а . Рассмотрим два случая
Точка O лежит на прямой а
Прямая проходящая через середину окружности
Прямая проходящая через середину окружностиПостроим окружности радиуса АВ с центрами А и В. Пусть С — одна из точек их пересечения. Проведем прямую через точки С и О.
Прямая проходящая через середину окружностиПо построению отрезок СО — медиана равностороннего треугольника ABC , которая является также его высотой. Итак, Прямая проходящая через середину окружности, то есть прямая СО — искомая.
Точка O не лежит на прямой а
Прямая проходящая через середину окружностиПостроим окружность с центром О , которая пересекает прямую O, в точках А и В .
Прямая проходящая через середину окружностиПостроими окружности того же радиуса с центрами A и В . Пусть Ol — точка пересечения этих окружностей, причем точки О и Ol лежат по разные стороны от прямой а .
Прямая проходящая через середину окружностиПроведем прямую Прямая проходящая через середину окружности. Пусть С — точка пересечения прямых Прямая проходящая через середину окружностии а . По построению Прямая проходящая через середину окружности(по третьему признаку). Отсюда Прямая проходящая через середину окружности. Тогда ОС — биссектриса равнобедренного треугольника АОВ , проведенная к основанию. Она также является медианой и высотой треугольника. Следовательно, Прямая проходящая через середину окружностиа , то есть прямая Прямая проходящая через середину окружности— искомая.

Отметим, что построенная прямая Прямая проходящая через середину окружностиперпендикулярна отрезку АВ и проходит через его середину. Такую прямую называют серединным перпендикуляром к отрезку.

Пользуясь описанными построениями, несложно решить задачи на построение середины данного отрезка и на построение прямой, параллельной данной.

Для построения середины отрезка АВ достаточно провести две окружности радиуса АВ с центрами в точках А к В (рис. 172). Обозначив точки пересечения этих окружностей через Прямая проходящая через середину окружностии Прямая проходящая через середину окружностиможно определить середину отрезка AB как точку пересечения прямых АВ и Прямая проходящая через середину окружности, после чего провести доказательство, аналогичное доказательству предыдущей задачи.

Прямая проходящая через середину окружности

Для построения прямой, проходящей через данную точку О параллельно данной прямой а, достаточно провести через точку О прямую b , перпендикулярную а, и прямую с, перпендикулярную b (рис. 173). Тогда а || с по теореме о двух прямых, перпендикулярных третьей.

Прямая проходящая через середину окружности

Таким образом, основными задачами на построение будем считать следующие:

  1. построение треугольника с данными сторонами;
  2. построение угла, равного данному неразвернутому углу;
  3. построение биссектрисы данного неразвернутого угла;
  4. построение прямой, проходящей через данную точку перпендикулярно данной прямой;
  5. построение серединного перпендикуляра к данному отрезку;
  6. построение середины данного отрезка;
  7. построение прямой, проходящей через данную точку параллельно данной прямой.

Если эти задачи применяются как вспомогательные при решение более сложных задач, соответствующие построения можно подробно не описывать.

Решение задач на построение

Решение задач на построение состоит из четырех основных этапов: анализ, построение, доказательство, исследование.

Выполнение рисунка-эскиза искомой фигуры и установление связи между ее элементами и данными задачи. Определение плана построения искомой фигуры.

Осуществление плана, разработанного в ходе анализа.

Обоснование того, что построенная фигура имеет заданную форму, а размеры и расположение ее элементов удовлетворяют условию задачи.

Определение количества решений и условий существования искомой фигуры или обоснование невозможности ее построения.

Если задача достаточно проста, то отдельные этапы ее решения можно проводить устно.

1] В некоторых задачах для исследования необходимы геометрические утверждения и соотношения, изучаемые в 8—9 классах. В этих случаях исследования мы будем проводить в сокращенном виде или вообще опускать.

Рассмотрим на конкретных примерах некоторые методы решения задач на построение.

Пример №18

Постройте треугольник по двум сторонам и медиане, проведенной к одной из них.

Решение:

Анализ

Пусть a, b, Прямая проходящая через середину окружности— две стороны и медиана треугольника ABC, который необходимо построить (рис. 174).

Допустим, что треугольник ABC построен (рис. 175). Если ВМ — данная медиана треугольника ABC, то в треугольнике АВМ известны длины трех сторон Прямая проходящая через середину окружностипо условию задачи). Таким образом, мы можем построить треугольник АВМ и найти вершины А и В искомого треугольника. Чтобы найти вершину С, достаточно отложить на луче AM отрез ок МС длиной Прямая проходящая через середину окружности

Прямая проходящая через середину окружностиПрямая проходящая через середину окружности

Построение

  1. Разделим отрезок bпополам.
  2. Построим треугольник АВМ со сторонами АВ = а, Прямая проходящая через середину окружности
  3. Отложим на луче AM отрезок Прямая проходящая через середину окружности.
  4. Соединим точки В и С.

Доказательство

В треугольнике Прямая проходящая через середину окружности— медиана (по построению). Следовательно, треугольник ABC искомый.

Исследование

Задача имеет решение при условии существования треугольника АВМ, то есть, если числа Прямая проходящая через середину окружности— удовлетворяют неравенству треугольника.

Сравним только что решенную задачу с задачей о доказательстве равенства треугольников но двум сторонам и медиане, проведенной к одной из них (п. 13.1). Решая обе эти задачи, мы использовали треугольник АВМ в котором все стороны известны по условию. Его рассмотрение помогло в задаче на доказательство получить необходимые соотношения для углов данных треугольников, а в задаче на построение — найти две вершины искомого треугольника. Треугольник АВМ называют вспомогательным а соответствующий метод решения — методом вспомогательного треугольника.

Решение задач на построение с помощью метода вспомогательной треугольника подробно рассмотрено в Приложении 2.

Геометрическое место точек

Понятие о геометрическом месте точек

До сих пор мы описывали геометрические фигуры с помощью определений и устанавливали их особенности путем доказательства свойств и признаков, относящихся к фигуре в целом. Для случаев, когда определенное свойство и соответствующий ему признак имеет каждая точка фигуры, существует еще один способ описания.

Определение:

Геометрическим местом точек (сокращенно ГМТ) на плоскости называется фигура, которая состоит из всех точек плоскости, удовлетворяющих определенному условию.

Например, по определению окружность является геометрическим местом точек, удаленных от данной точки плоскости на одинаковое расстояние.

В определении ГМТ обратим внимание на слово «всех». Оно указывает на то, что для выяснения геометрического места точек недостаточно доказать, что точки указанной фигуры удовлетворяют определенному условию (то есть установить свойство точек). Необходимо также показать, что других точек, удовлетворяющих данному условию, на плоскости нет, то есть доказать соответствующий признак: если точка удовлетворяет указанному условию, то она принадлежит данной фигуре.

Иначе говоря, доказательство того, что некоторая фигура F является геометрическим местом точек, удовлетворяющих условию Р, состоит из доказательства двух утверждений — прямого и обратного:

  1. если определенная точка P принадлежит фигуре F, то она удовлетворяет условию Р ;
  2. если определенная точка удовлетворяет условию Р, то она принадлежит фигуре F .

Основные теоремы о ГМТ

Часто геометрическим местом точек является прямая или часть прямой. Докажем две важные теоремы о ГМТ.

Теорема: (о серединном перпендикуляре)

Серединный перпендикуляр к отрезку является геометрическим местом точек, равноудаленных от концов этого отрезка.

Доказательство:

Нам необходимо доказать два утверждения:

  1. если точка принадлежит серединному перпендикуляру к отрезку, то она равноудалена от концов этого отрезка;
  2. если точка равноудалена от концов отрезка, то она принадлежит серединному перпендикуляру к этому отрезку.

Докажем первое из этих утверждений. Пусть точка С лежит на прямой с, перпендикулярной отрезку АВ и проходящей через его середину — точку О (рис. 176). В треугольнике АСВ отрезок СО — медиана и высота, значит, этот треугольник равнобедренный с основанием АВ. Отсюда АС=ВС , то есть расстояния от точки С до концов отрезка АВ равны. Докажем второе утверждение. Пусть точка D равноудалена от точек А и В , то есть AD = BD (рис. 177). Тогда в равнобедренном треугольнике ADB отрезок DO — медиана, проведенная к основанию, которая является также и высотой. Таким образом, прямая DO — серединный перпендикуляр к отрезку АВ. Теорема доказана.

Прямая проходящая через середину окружностиПрямая проходящая через середину окружности

Теорема: (о биссектрисе угла)

Биссектриса неразвернутого угла является геометрическим местом точек, равноудаленных от сторон этого угла.

Доказательство

По аналогии с предыдущей теоремой докажем сначала, что любая точка биссектрисы равноудалена от сторон угла.

Пусть даны неразвернутый угол с вершиной А и точка D на его биссектрисе (рис. 178). Опустим из точки D перпендикуляры DB и DC на стороны данного угла. По определению, DB и DC — расстояния от точки D до сторон угла А.

Прямоугольные треугольники DBA и DCA имеют общую гипотенузу Прямая проходящая через середину окружностипо условию. Тогда Прямая проходящая через середину окружностипо гипотенузе и острому углу. Отсюда DB = DC , то есть точка D равноудалена от сторон данного угла.

Теперь докажем, что любая точка, равноудаленная от сторон угла, принадлежит его биссектрисе. Пусть F — некоторая точка, равноудаленная от сторон угла А, то есть перпендикуляры FB и FC, опущенные из точки F на стороны данного угла, равны (рис. 179). Соединим точки F и А . Тогда прямоугольные треугольники FBA и FCA равны по гипотенузе и катету.

ОтсюдаПрямая проходящая через середину окружности, то есть луч AF — биссектриса угла А.

Прямая проходящая через середину окружностиПрямая проходящая через середину окружности

*Здесь и далее, говоря о точках, равноудаленных от сторон угла, мы имеем в виду точки, лежащие внутри угла и равноудаленные от прямых, содержащих его стороны.

Метод геометрических мест

Понятие ГМТ часто используется при решении задач на построение. Например, пусть необходимо построить точку, удовлетворяющую условиям Прямая проходящая через середину окружностии Прямая проходящая через середину окружности. Если геометрическим местом точек, удовлетворяющих условиюПрямая проходящая через середину окружности, является фигура Прямая проходящая через середину окружности, а геометрическим местом точек, удовлетворяющих условию Прямая проходящая через середину окружности— фигура Прямая проходящая через середину окружностито искомая точка будет общей для фигур Прямая проходящая через середину окружностии Прямая проходящая через середину окружностито есть точкой их пересечения.

Рассуждения по такой схеме лежат в основе метода геометрических мест.

Пример №19

Постройте прямоугольный треугольник по гипотенузе и катету.

Решение:

Пусть в искомом прямоугольном треугольнике ABC гипотенуза АВ равна с , катет ВС равен а (рис. 180). Для построения треугольника воспользуемся методом геометрических мест. Для этого на стороне прямого угла С отложим катет ВС, ВС = а (рис. 181). Точка А должна принадлежать второй стороне прямого угла и быть удаленной от точки В на расстояние с, то есть А — точка пересечения окружности с центром В радиуса с со второй стороной прямого угла. Построенные точки А, В и С являются вершинами искомого прямоугольного треугольника ABC. В соответствии со следствием теоремы о сравнении сторон и углов треугольника задача имеет решение при условии а Прямая проходящая через середину окружности с.

Прямая проходящая через середину окружности Прямая проходящая через середину окружности

Описанная и вписанная окружности треугольника

Окружность, описанная около треугольника

Определение:

Окружность называется описанной около треугольника, если все вершины треугольника лежат на данной окружности.

В этом случае говорят, что треугольник является вписанным в данную окружность.

На рисунке 183 окружность с центром О описана около треугольника ABC.

Поскольку все вершины треугольника лежат на описанной окружности, то все они равноудалены от центра окружности. Этот факт лежит в основе доказательства теоремы об описанной окружности.

Прямая проходящая через середину окружности

Теорема: (об окружности, описанной около треугольника)

Около любого треугольника можно описать единственную окружность. Центр этой окружности является точкой пересечения серединных перпендикуляров к сторонам треугольника.

Доказательство:

Пусть прямые а и b — серединные перпендикуляры к сторонам АВ и ВС данного треугольника ABC (рис. 184).

Сначала докажем методом от противного, что прямые а и b пересекаются. Предположим, что эти прямые не пересекаются, то есть а || b . Тогда поскольку Прямая проходящая через середину окружности, то Прямая проходящая через середину окружностипо следствию из теоремы о свойствах углов при параллельных прямых. Но Прямая проходящая через середину окружностипо построению, отсюда Прямая проходящая через середину окружностичто невозможно по условию. Следовательно, прямые а и b пересекаются в некоторой точке О.

Прямая проходящая через середину окружности

По теореме о серединном перпендикуляре точка О равноудалена от точек А и В (то есть OA = OB ) и равноудалена от точек В и С (то есть ОВ = ОС ). Отсюда OA = OB = ОС. Следовательно, существует окружность с центром О, проходящая через все вершины треугольника ABC.

Докажем методом от противного, что такая окружность единственна.

Допустим, что около треугольника можно описать еще одну окружность, отличную от построенной. Тогда центр этой окружности равноудален от вершин треугольника и потому совпадает с О, точкой пересечения серединных перпендикуляров к сторонам треугольника. Радиус этой окружности равен расстоянию от точки О до вершин треугольника. Значит, эта окружность совпадает с построенной.

И наконец, серединный перпендикуляр с к стороне АС содержит вое точки, равноудаленные от точек А и С . Поскольку точка О также равноудалена от точек А и С , то этот серединный перпендикуляр проходит через точку О. Теорема доказана.

Три серединных перпендикуляра к сторонам треугольника пересекаются в одной точке.

Отметим, что центр описанной окружности не всегда лежит внутри треугольника; он также может лежать на одной из его сторон или вне треугольника (рис. 185).

Прямая проходящая через середину окружности

Окружность, вписанная в треугольник

Определение:

Окружность называется вписанной в треугольник, если она касается всех его сторон.

В этом случае треугольник является описанным около данной окружности.

На рисунке 186 окружность с центром О вписана в треугольник ABC. Прямые, содержащие стороны треугольника, являются касательными к вписанной окружности, а точки касания лежат на сторонах треугольника. Радиусы вписанной окружности, проведенные в точки касания, перпендикулярны сторонам данного треугольника.

Прямая проходящая через середину окружности

Далее в таком случае мы будем говорить, что центр вписанной окружности равноудален от сторон треугольника.

Теорема: (об окружности, вписанной в треугольник)

В любой треугольник можно вписать единственную окружность. Центр этой окружности является точкой пересечения биссектрис треугольника.

Доказательство:

Пусть AD и BE — биссектрисы данного треугольника ABC (рис. 187).

Прямая проходящая через середину окружности

Докажем методом от противного, что эти биссектрисы пересекаются. Пусть AD и BE не пересекаются. Тогда AD || BE, а углы BAD и ABE — внутренние односторонние при параллельных прямых AD и BE и секущей АВ. Сумма этих углов должна быть равна 180°, что противоречит теореме о сумме углов треугольника.

Итак, биссектрисы AD и BE пересекаются в некоторой точке О. Тогда по теореме о биссектрисе угла точка О равноудалена от сторон АВ и АС, а также равноудалена от сторон АВ и ВС . Таким образом, три перпендикуляра, опущенные из точки О на стороны данного треугольника, равны. Следовательно, существует окружность с центром О, которая касается всех сторон треугольника ABC.

Докажем методом от противного, что эта окружность единственна.

Допустим, что в треугольник можно вписать еще одну окружность, отличную от построенной. Тогда ее центр одинаково удален от сторон треугольника и совпадает с О, точкой пересечения биссектрис треугольника. Радиус этой окружности равен расстоянию от точки О до сторон треугольника. Таким образом, эта окружность совпадает с построенной.

И наконец, биссектриса CF содержит все точки, равноудаленные от сторон СА и СВ. Поскольку точка О также равноудалена от СА и СВ, то эта биссектриса проходит через точку О. Теорема доказана.

Три биссектрисы треугольника пересекаются в одной точке.

Поскольку все биссектрисы треугольника лежат внутри него, то и центр вписанной окружности всегда лежит внутри треугольника.

Пример №20

В равностороннем треугольнике центры описанной и вписанной окружностей совпадают. Докажите.

Решение:

В равностороннем треугольнике ABC биссектрисы Прямая проходящая через середину окружностиявляются также медианами и высотами (рис. 188). Это означает, что. прямые Прямая проходящая через середину окружности— серединные перпендикуляры к сторонам треугольника ABC. Поскольку все они пересекаются в одной точке, то эта точка — центр описанной и вписанной окружностей треугольника ABC.

Прямая проходящая через середину окружности

Верно также и обратное утверждение: если в треугольнике центры описанной и вписанной окружностей совпадают, то этот треугольник равносторонний. Попробуйте доказать это самостоятельно.

Историческая справка:

Простейшие геометрические задачи на построение:

Возникновение задан на построение было обусловлено необходимостью измерений земельных участков и строительством. Значительных успехов в решении таких задач достигли древнегреческие ученые, прежде всего Евклид и Платон, в VII — III в. до н. з. Именно со времен Платона в решении задач на построение стали выделять четыре этапа: анализ, собственно построение, доказательство и исследование.

Задачи, которые невозможно решить с помощью циркуля и линейки

Особый интерес математиков древности вызывали три классические задачи, которые не удавалось решить с помощью циркуля и линейки — о квадратуре круга, трисекции угла и удвоении куба. Задача о квадратуре круга состояла в построении квадрата, площадь которого равна площади данного круга. В задаче о трисекции угла пытались разделить данный угол на три равные части. Такую задачу несложно решить для некоторых конкретных углов, например развернутого, прямого, но не для любого угла. Задача об удвоении куба состояла в построении куба, объем которого вдвое больше объема данного куба. Невозможность решить эти задачи с помощью циркуля и линейки была доказана в XIX в.

Циркуль или линейка

Интересна историй ограничений в выборе инструментов для решения задач на построение. В X веке арабский математик Абу-ль-Вафа предложил ограничиться в геометрических построениях односторонней линейкой и циркулем постоянного раствора. В 1797 г. итальянец Лоренцо Маскерони доказал: любая задача на построение, решенная с помощью циркуля и линейки, может быть решена и с помощью одного циркуля (при этом предполагалось, что через любые две точки может быть проведена прямая). А еще раньше, в 1672 г. к такому же выводу пришел датчанин Г. Мор. Так, теорема о возможности построений только циркулем получила название «теоремы Мора — Маскерони». В 1833 г. швейцарский геометр Якоб Штейнер показал, что, при наличии на плоскости окружности с отмеченным центром, любую задачу на построение можно решить с помощью одной линейки. Задачи на построение играют особую роль в обучении геометрии, ведь они прекрасно развивают логику и абстрактное мышление. Специалисты считают задачи на построение одними из самых полезных и красивых задач геометрии.

Об аксиомах геометрии

Вы ознакомились с начальными понятиями геометрии: точкой и прямой, а также лучом, отрезком и углом. Их основные свойства — аксиомы — не доказываются, но являются фундаментом для доказательства других утверждений. Первую попытку провести логическое обоснование геометрии с помощью систематизированного перечня исходных положений (аксиом или постулатов) осуществил древнегреческий математик Евклид в своей знаменитой книге «Начала». На протяжении многих веков ученые-геометры опирались именно на евклидовы аксиомы. Но в XIX—XX вв., после создания Лобачевским неевклидовой геометрии, исследования системы геометрических аксиом вышли на качественно новый уровень. Одним из тех, кто внес заметный вклад в усовершенствование аксиоматики, был выдающийся украинский математик Алексей Васильевич Погорелов. В своей фундаментальной работе «Основания геометрии» (1983) он разработал собственную усовершенствованную систему аксиом евклидовой геометрии, которая решила проблему преодоления ряда существенных трудностей, возникших при введении понятия меры для отрезков и углов. Более того, А. В. Погорелов предложил упрощенный вариант геометрической аксиоматики, предназначенный именно для преподавания геометрии в школе. Этот вариант был положен в основу учебника «Геометрия», по которому свыше четверти века изучали и, без сомнения, будут изучать геометрию в школе. Вот как выглядит система аксиом школьного курса, предложенная А. В. Погореловым.

  1. Какова бы ни была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей. Через любые две точки можно провести прямую, и только одну.
  2. Из трех точек на прямой одна и только одна лежит между двумя другими.
  3. Каждый отрезок имеет определенную длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой.
  4. Прямая разбивает плоскость на две полуплоскости.

Каждый угол имеет градусную меру, большую нуля. Развернутый угол равен 180°. Градусная мера угла равна сумме градусных мер углов, на

  1. которые он разбивается любым лучом, проходящим между его сторонами.
  2. На любой полупрямой от ее начальной точки можно отложить отрезок заданной длины, и только один.
  3. От любой полупрямой в заданную полуплоскость можно отложить угол с заданной градусной мерой, меньшей 180°, и только один.
  4. Каков бы ни был треугольник, существует равный ему треугольник, в заданном расположении относительно данной полупрямой.
  5. Через точку, не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной.

Этой системы аксиом мы придерживаемся и в нашем учебнике с учетом принятой нами терминологии. Некоторые аксиомы были сформулированы в главе I, другие аксиомы не формулировались, но фактически использовались в рассуждениях. Отметим, что авторы не ставили цель представлять в этом учебнике абсолютно совершенную и логически завершенную систему аксиом, а сосредоточили основное внимание на практическом применении основных свойств простейших геометрических фигур при доказательстве теорем и решении задач. В дальнейшем, при изучении свойств фигур в пространстве, формулировки некоторых аксиом будут уточнены, а сама система аксиом — расширена.

Вообще же, система аксиом должна удовлетворять условиям независимости (не содержать аксиомы, которые можно вывести с помощью других аксиом), непротиворечивости (не иметь явных или скрытых противоречий) и полноты (содержать достаточное количество аксиом, чтобы доказать основные утверждения). Исследование проблем построения таких систем аксиом является содержанием одного из разделов современной геометрии.

Метод вспомогательного треугольника

Метод вспомогательного треугольника применяется при решении многих задач на построение. Используя этот метод, необходимо придерживаться следующей последовательности действий:

  1. предположив, что искомый треугольник построен, выполнить рисунок- эскиз и найти на нем вспомогательный треугольник, способ построения которого известен (или получить такой треугольник путем дополнительных построений);
  2. установить, какие вершины искомого треугольника мы получим, построив вспомогательный треугольник;
  3. определить на основании данных задачи последовательность построения других вершин, предположив, что вспомогательный треугольник построен;
  4. осуществить все намеченные построения;
  5. провести необходимые доказательства и исследования.

Довольно часто метод вспомогательного треугольника используют в сочетании с другими методами. Рассмотрим такие случаи на примерах.

Пример №21

Постройте прямоугольный треугольник по катету и сумме второго катета и гипотенузы.

Решение:

Пусть а и b + с — катет и сумма второго катета и гипотенузы треугольника ABC, который необходимо построить (рис. 194). Прямая проходящая через середину окружности

Анализ

Допустим, что треугольник ABC построен (рис. 195). Отложим на луче ВС отрезок CD длиной с и соединим точки А и D. Треугольник АВD прямоугольный с катетами а и b+с, то есть может быть построен по данным задачи и является вспомогательным. Построив его, получим вершины А и В искомого треугольника. Для построения вершины С воспользуемся одним из признаков равнобедренного треугольника. Точка С является точкой пересечения серединного перпендикуляра к стороне АD с лучом BD.

Построение

  • 1. Построим прямой угол с вершиной В.
  • 2. Отложим на сторонах этого угла отрезки АВ = а и ВD = b+с и соединим точки А и О. Треугольник АВD вспомогательный.
  • 3. Построим перпендикуляр к отрезку АО. который проходит через его середину В. Пусть С— точка его пересечения с лучом ВD.
  • 4. Соединим точки А и С.

Прямая проходящая через середину окружности

Доказательство:

В треугольнике Прямая проходящая через середину окружностипо построению. В треугольнике Прямая проходящая через середину окружности— высота и медиана (по построению). Значит, треугольник АСD равнобедренный с основанием AD), откуда СА=СD=с. По построению Прямая проходящая через середину окружности, следовательно, Прямая проходящая через середину окружностиТаким образом, треугольник ABC искомый.

В соответствии с неравенством треугольника, задача имеет решение при условии aПрямая проходящая через середину окружностиc+b

При решении этой задачи мы использовали метод спрямления. Суть его такова: если в условии задачи на построение заданы сумма (или разность) отрезков, то на рисунке-эскизе их необходимо отложить на одной прямой от общего конца так, чтобы другие концы этих отрезков образовали заданный отрезок-сумму (разность). Благодаря такому дополнительному построению, удается получить вспомогательный треугольник.

Пример №22

Постройте треугольник по медиане и двум углам, на которые она делит угол треугольника.

Решение:

Пусть m — медиана треугольника ABC, который необходимо построить, Прямая проходящая через середину окружности— углы, на которые медиана делит угол треугольника (рис. 196).

Прямая проходящая через середину окружности

Анализ

Допустим, что треугольник ABC построен (рис. 197). Применим метод удвоения медианы. Для этого на луче ВМ отложим отрезок МD, равный m, и соединим точки O и А. По первому признаку равенства треугольников Прямая проходящая через середину окружности(АМ=СМ по определению медианы, ВМ =DМ по построению, Прямая проходящая через середину окружности Прямая проходящая через середину окружностикак вертикальные). Тогда Прямая проходящая через середину окружности

Следовательно, треугольник АВD вспомогательный, поскольку его можно построить по стороне и прилежащим к ней углам Прямая проходящая через середину окружностиПостроив этот треугольник, получим вершины А и В скомого треугольника. Для построения вершины С достаточно удвоить в треугольнике АВD медиану AM.

Построение (сокращенный план)

  • 1. Построим треугольник АВD, в котором BD=2mПрямая проходящая через середину окружности. Треугольник АВй вспомогательный.
  • 2. Построим в треугольнике АВD медиану AM и на ее продолжении отложим отрезок МС, равный Am. >
  • 3. Соединим точки Bи С.

Доказательство

Прямая проходящая через середину окружностипо первому признаку равенства треугольников Прямая проходящая через середину окружностипо построению, Прямая проходящая через середину окружностикак вертикальные). Тогда Прямая проходящая через середину окружностиТакже по построению Прямая проходящая через середину окружностиВ треугольнике Прямая проходящая через середину окружности— медиана, поскольку по построению Прямая проходящая через середину окружностиТаким образом, треугольник ABC — искомый.

Пример №23

Постройте треугольник по стороне, медиане, проведенной к этой стороне, и высоте, опущенной на другую сторону.

Решение:

Пусть а — сторона искомого треугольника ABC, Прямая проходящая через середину окружности— проведенная к ней медиана, Прямая проходящая через середину окружности— высота треугольника, проведенная к другой стороне (рис. 198). Построим этот треугольник.

Прямая проходящая через середину окружности

Анализ

Пусть треугольник ABC построен (рис. 199). Тогда прямоугольный треугольник ВСН можно построить по гипотенузе BC и катету ВН : на стороне прямого угла Н отложим катет BH=hb , тогда С — точка пересечения окружности с центром В радиуса а со второй стороной прямого угла.

Таким образом, мы построим вершины В и С искомого треугольника. Для построения вершины А снова используем метод геометрических мест. Поскольку основание высоты ВН принадлежит стороне АС, то точка А лежит на прямой НС. Поскольку Прямая проходящая через середину окружностито точка А должна лежать на расстоянии Прямая проходящая через середину окружностиот точки D. Это означает, что A — точка пересечения прямой СH и окружности радиуса Прямая проходящая через середину окружностис центром D.

Прямая проходящая через середину окружности

Построение

  • 1. Построим прямой угол с вершиной Н.
  • 2. Отложим на стороне этого угла отрезокВН, ВН= hb.
  • 3. Построим окружность с центром В радиуса а. Пусть С — точка пересечения этой окружности с другой стороной прямого угла.
  • 4. Соединим точки В и Си разделим отрезок ВС пополам. Пусть точка D — его середина.
  • 5. Проведем прямую СН.
  • 6. Построим окружность с центром D радиуса mа. ПустьА — точка пересечения этой окружности с прямой СН.
  • 7. Соединим точкиА и В.

Доказательство

В треугольнике Прямая проходящая через середину окружности— медиана, Прямая проходящая через середину окружности— высота (по построению). Следовательно, треугольник ABC — искомый.

Исследование

В соответствии со следствием теоремы о сравнении сторон и углов треугольника вспомогательный треугольник существует, если hb Прямая проходящая через середину окружности a. В зависимости от длины медианы Прямая проходящая через середину окружностизадача имеет одно или два решения, или не имеет ни одного.

Реальная геометрия

На любой шине от автомобиля есть маркировка, указывающая на ее размеры, например, 195/55 R16 (рис. 54). Число 195 означает ширину шины в мм. В данном случае ширина шины равна 195 мм или 19,5 см.

Второе число 55 означает высоту шины или высоту ее профиля, выраженную в процентах от ее ширины. В нашем случае это 55 % от 195 мм, то есть примерно 107 мм или 10,7 см.

И наконец надпись R16 обозначает внутренний диаметр шины, выраженный в дюймах. Так как 1 дюйм Прямая проходящая через середину окружностито для нашей шины получим Прямая проходящая через середину окружности
Прямая проходящая через середину окружности

Интересно знать:

Если круг вращать около своего диаметра, получим геометрическое тело, которое вы хорошо знаете, — шар (рис. 55). Он также имеет центр, радиус, диаметр. Поверхность шара называется сферой. Сфера — это оболочка шара. Расстояние от центра шара до любой точки сферы равно радиусу шара. Диаметр шара равен двум радиусам.

Прямая проходящая через середину окружности

Если провести плоскость, пересекающую шар, то в сечении получим круг. Когда секущая плоскость будет проходить через центр шара, радиус R полученного круга будет равен радиусу шара.

Видео:Построение окружности по трём точкам.Скачать

Построение окружности по трём точкам.

Справочный материал по окружности и кругу

18. Геометрическое место точек

  • ✓ Геометрическим местом точек (ГМТ) называют множество всех точек, обладающих определенным свойством.
  • ✓ Серединный перпендикуляр отрезка является геометрическим местом точек, равноудаленных от концов этого отрезка.
  • ✓ Биссектриса угла является геометрическим местом точек, принадлежащих углу и равноудаленных от его сторон.

19. Окружность и круг, их элементы

  • ✓ Окружностью называют геометрическое место точек, расстояния от которых до заданной точки равны данному положительному числу. Данную точку называют центром окружности.
  • ✓ Любой отрезок, соединяющий точку окружности с ее центром, называют радиусом окружности.
  • ✓ Отрезок, соединяющий две точки окружности, называют хордой окружности. Хорду, проходящую через центр окружности, называют диаметром.
  • ✓ Диаметр окружности в два раза больше ее радиуса.
  • ✓ Кругом называют геометрическое место точек, расстояния от которых до заданной точки не больше данного положительного числа. Заданную точку называют центром круга. Радиус окружности, ограничивающей круг, называют радиусом круга. Если X — произвольная точка круга с центром О и радиусом Прямая проходящая через середину окружности
  • ✓ Окружность, ограничивающая круг, ему принадлежит.
  • ✓ Хорда и диаметр круга — это хорда и диаметр окружности, ограничивающей круг.

20. Свойства окружности

  • ✓ Диаметр окружности, перпендикулярный хорде, делит эту хорду пополам.
  • ✓ Диаметр окружности, который делит хорду, отличную от диаметра, пополам, перпендикулярен этой хорде.

21. Взаимное расположение прямой и окружности. Касательная к окружности

  • ✓ Прямая и окружность могут не иметь общих точек, иметь две общие точки или иметь одну общую точку.
  • ✓ Прямую, имеющую с окружностью только одну общую точку, называют касательной к окружности.
  • ✓ Касательная к окружности перпендикулярна радиусу, проведенному в точку касания.
  • ✓ Если прямая, проходящая через точку окружности, перпендикулярна радиусу, проведенному в эту точку, то эта прямая является касательной к данной окружности.
  • ✓ Если расстояние от центра окружности до некоторой прямой равно радиусу окружности, то эта прямая является касательной к данной окружности.
  • ✓ Если через данную точку к окружности проведены две касательные, то отрезки касательных, соединяющие данную точку с точками касания, равны.

Описанная и вписанная окружности треугольника

Окружность называют описанной около треугольника, если она проходит через все его вершины.

На рисунке 247 изображена окружность, описанная около треугольника. В этом случае также говорят, что треугольник вписан в окружность.

Прямая проходящая через середину окружности

  • ✓ Центр описанной окружности треугольника равноудален от всех его вершин.
  • ✓ Около любого треугольника можно описать окружность. Центр окружности, описанной около треугольника, — это точка пересечения серединных перпендикуляров сторон треугольника.
  • ✓ Серединные перпендикуляры сторон треугольника пересекаются в одной точке.
  • ✓ Окружность называют вписанной в треугольник, если она касается всех его сторон.
  • ✓ На рисунке 248 изображена окружность, вписанная в треугольник. В этом случае также говорят, что треугольник описан около окружности.
  • ✓ Центр вписанной окружности треугольника равноудален от всех его сторон.
  • ✓ В любой треугольник можно вписать окружность. Центр окружности, вписанной в треугольник, — это точка пересечения биссектрис треугольника.
  • ✓ Биссектрисы треугольника пересекаются в одной точке.
  • ✓ Радиус окружности, вписанной в прямоугольный треугольник, вычисляют по формуле Прямая проходящая через середину окружностигде r — радиус вписанной окружности, а и b — катеты, с — гипотенуза.

Что называют окружностью

Окружностью называют геометрическую фигуру, состоящую из всех точек плоскости, равноудаленных от данной точки (рис. 282).

Прямая проходящая через середину окружности

Эту точку называют центром окружности; отрезок, соединяющий точку окружности с ее центром, называют радиусом окружности.

На рисунке 282 точка Прямая проходящая через середину окружности— центр окружности, Прямая проходящая через середину окружности— радиус окружности.

Отрезок, соединяющий две точки окружности, называют хордой. Хорду, проходящую через центр окружности, называют диаметром. На рисунке 282 Прямая проходящая через середину окружности— хорда, Прямая проходящая через середину окружности— диаметр. Часть плоскости, ограниченную окружностью, вместе с самой окружностью называют кругом (рис. 283).

Прямая проходящая через середину окружности

Центром, радиусом, диаметром, хордой круга называют соответственно центр, радиус, диаметр, хорду окружности, ограничивающей круг.

Свойства элементов окружности.

  1. Диаметр окружности вдвое больше его радиуса.
  2. Диаметр является наибольшей из хорд.
  3. Диаметр из любой точки окружности виден под прямым углом.
  4. Диаметр окружности, перпендикулярный хорде, делит ее пополам.
  5. Диаметр окружности, проходящий через середину хорды, которая не является диаметром, перпендикулярен этой хорде.

Касательной к окружности называют прямую, которая имеет с окружностью одну общую точку. Эту точку называют точкой касания.

На рисунке 284 прямая Прямая проходящая через середину окружности— касательная к окружности, точка Прямая проходящая через середину окружности— точка касания.

Свойство касательной. Касательная к окружности перпендикулярна радиусу, проведенному в точку касания.

Свойство отрезков касательных, проведенных из одной точки. Отрезки касательных, проведенных к окружности из одной точки, равны. На рисунке 285

Прямая проходящая через середину окружности

Прямая проходящая через середину окружности

Окружность, вписанная в треугольник

Окружность называют вписанной в треугольник, если она касается всех его сторон. При этом треугольник называют описанным около окружности (рис. 286).

В любой треугольник можно вписать окружность. Центром окружности, вписанной в треугольник, является точка пересечения биссектрис треугольника.

Прямая проходящая через середину окружности

Окружность, описанная около треугольника

Окружность называют описанной около треугольника, если она проходит через все вершины треугольника. При этом треугольник называют вписанным в окружность (рис. 287).

Около любого треугольника можно описать окружность. Центром окружности, описанной около треугольника, является точка пересечения серединных перпендикуляров к его сторонам.

Геометрическое место точек в окружности и круге

Любое множество точек — это геометрическая фигура. Изобразить произвольную фигуру легко: все, что нарисуете, — это геометрическая фигура (рис. 272). Однако изучать фигуры, состоящие из хаотически расположенных точек, вряд ли целесообразно. Поэтому разумно выделить тот класс фигур, все точки которых обладают каким-то характерным свойством. Каждую из таких фигур называют геометрическим местом точек.

Прямая проходящая через середину окружности

Определение. Геометрическим местом точек (ГМТ) называют множество всех точек, обладающих определенным свойством.

Образно ГМТ можно представить так: задают некоторое свойство, а потом на белой плоскости все точки, обладающие этим свойством, красят в красный цвет. Та «красная фигура», которая при этом получится, и будет ГМТ.

Например, зафиксируем две точки Прямая проходящая через середину окружностии Прямая проходящая через середину окружности. Для всех точек зададим свойство: одновременно принадлежать лучам Прямая проходящая через середину окружностии Прямая проходящая через середину окружности. Ясно, что указанным свойством обладают все точки отрезка Прямая проходящая через середину окружностии только они (рис. 273). Поэтому искомым ГМТ является отрезок Прямая проходящая через середину окружности.

Прямая проходящая через середину окружности

Рассмотрим перпендикулярные прямые Прямая проходящая через середину окружностии Прямая проходящая через середину окружности. Для всех точек зададим свойство: принадлежать прямой Прямая проходящая через середину окружностии находиться на расстоянии 1 см от прямой Прямая проходящая через середину окружности. Очевидно, что точки Прямая проходящая через середину окружностии Прямая проходящая через середину окружности(рис. 274) удовлетворяют этим условиям. Также понятно, что никакая другая точка, отличная от Прямая проходящая через середину окружностии Прямая проходящая через середину окружности, этим свойством не обладает. Следовательно, искомое ГМТ — это фигура, состоящая из двух точек Прямая проходящая через середину окружностии Прямая проходящая через середину окружности(рис. 274).

Прямая проходящая через середину окружности

Вообще, чтобы иметь право какое-то множество точек называть ГМТ, надо доказать две взаимно обратные теоремы:

  1. каждая точка данного множества обладает заданным свойством;
  2. если точка обладает заданным свойством, то она принадлежит данному множеству.

Теорема 19.1. Серединный перпендикуляр отрезка является геометрическим местом точек, равноудаленных от концов этого отрезка.

Доказательство: По теореме 8.2 каждая точка серединного перпендикуляра обладает заданным свойством. По теореме 11.2, если точка обладает заданным свойством, то она принадлежит серединному перпендикуляру.

Теорема 19.2. Биссектриса угла является геометрическим местом точек, принадлежащих углу и равноудаленных от его сторон.

Прямая теорема. Каждая точка биссектрисы угла равноудалена от его сторон.

Доказательство: Очевидно, что вершина угла обладает доказываемым свойством.

Прямая проходящая через середину окружности

Пусть какая-то точка Прямая проходящая через середину окружностине совпадает с вершиной угла Прямая проходящая через середину окружностии принадлежит его биссектрисе (рис. 275). Опустим перпендикуляры Прямая проходящая через середину окружностии Прямая проходящая через середину окружностисоответственно на стороны Прямая проходящая через середину окружностии Прямая проходящая через середину окружности. Надо доказать, что Прямая проходящая через середину окружности.

В прямоугольных треугольниках Прямая проходящая через середину окружностии Прямая проходящая через середину окружностигипотенуза Прямая проходящая через середину окружности— общая, Прямая проходящая через середину окружности, так как Прямая проходящая через середину окружности— биссектриса угла Прямая проходящая через середину окружности. Следовательно, Прямая проходящая через середину окружностипо гипотенузе и острому углу. Отсюда Прямая проходящая через середину окружности. Обратная теорема. Если точка, принадлежащая углу, равноудалена от его сторон, то она лежит на биссектрисе этого угла.

Доказательство: Очевидно, что вершина угла обладает доказываемым свойством.

Пусть какая-то точка Прямая проходящая через середину окружности, принадлежащая углу Прямая проходящая через середину окружности, не совпадает с его вершиной и равноудалена от его сторон. Опустим перпендикуляры Прямая проходящая через середину окружностии Прямая проходящая через середину окружностисоответственно на стороны Прямая проходящая через середину окружностии Прямая проходящая через середину окружности. Надо доказать, что Прямая проходящая через середину окружности(рис. 275).

В прямоугольных треугольниках Прямая проходящая через середину окружностии Прямая проходящая через середину окружностигипотенуза Прямая проходящая через середину окружности— общая, Прямая проходящая через середину окружностипо условию. Следовательно, Прямая проходящая через середину окружностипо гипотенузе и катету. Отсюда Прямая проходящая через середину окружностиПрямая проходящая через середину окружности.

Прямая проходящая через середину окружности

Заметим, что доказательство теоремы будет полным, если показать, что равноудаленность точки угла от его сторон исключает возможность, когда одна из точек к Прямая проходящая через середину окружностиили Прямая проходящая через середину окружностипринадлежит продолжению стороны угла (рис. 276). Исследовать эту ситуацию вы можете на занятии математического кружка. Также отметим, что теорема остается справедливой и для развернутого угла.

Определение. Окружностью называют геометрическое место точек, равноудаленных от заданной точки.

Прямая проходящая через середину окружности

Заданную точку называют центром окружности. На рисунке 277 точка Прямая проходящая через середину окружности— центр окружности.

Любой отрезок, соединяющий точку окружности с ее центром, называют радиусом окружности. На рисунке 277 отрезок Прямая проходящая через середину окружности— радиус. Из определения следует, что все радиусы одной окружности равны.

Отрезок, соединяющий две точки окружности, называют хордой окружности. На рисунке 277 отрезок Прямая проходящая через середину окружности— хорда. Хорду, проходящую через центр окружности, называют диаметром. На рисунке 277 отрезок Прямая проходящая через середину окружности— диаметр окружности. Очевидно, что Прямая проходящая через середину окружности, т. е. диаметр окружности в два раза больше ее радиуса.

Прямая проходящая через середину окружности

Из курса математики шестого класса вы знаете, что фигуру, ограниченную окружностью, называют кругом (рис. 278). Теперь с помощью понятия ГМТ можно дать другое

Определение. Кругом называют геометрическое место точек, расстояние от которых до заданной точки не больше данного положительного числа.

Заданную точку называют центром круга, данное число — радиусом круга. Если Прямая проходящая через середину окружности— произвольная точка круга с центром Прямая проходящая через середину окружностирадиуса Прямая проходящая через середину окружности, то Прямая проходящая через середину окружности(рис. 278). Если Прямая проходящая через середину окружности, то говорят, что точка Прямая проходящая через середину окружностилежит внутри окружности, ограничивающей данный круг. Точка Прямая проходящая через середину окружностикругу не принадлежит (рис. 278). Также говорят, что точка Прямая проходящая через середину окружностилежит вне окружности, ограничивающей круг. Из определения круга следует, что окружность, ограничивающая круг, ему принадлежит.

Хорда и диаметр круга — это хорда и диаметр окружности, ограничивающей круг.

Прямая проходящая через середину окружности

На продолжении хорды Прямая проходящая через середину окружностиокружности с центром Прямая проходящая через середину окружностиза точку Прямая проходящая через середину окружностиотметили точку Прямая проходящая через середину окружноститакую, что отрезок Прямая проходящая через середину окружностиравен радиусу окружности (рис. 279). Прямая Прямая проходящая через середину окружностипересекает данную окружность в точках Прямая проходящая через середину окружностии Прямая проходящая через середину окружности. Докажите, что Прямая проходящая через середину окружности.

Решение:

Пусть Прямая проходящая через середину окружности. Так как Прямая проходящая через середину окружности— равнобедренный, то Прямая проходящая через середину окружности. Прямая проходящая через середину окружности— внешний угол треугольника Прямая проходящая через середину окружности, Прямая проходящая через середину окружности. Так как Прямая проходящая через середину окружности— равнобедренный, то имеем: Прямая проходящая через середину окружности. Прямая проходящая через середину окружности— внешний угол треугольника Прямая проходящая через середину окружности. Тогда Прямая проходящая через середину окружностиПрямая проходящая через середину окружности, то есть Прямая проходящая через середину окружностиПрямая проходящая через середину окружности.

Некоторые свойства окружности. Касательная к окружности

Теорема 20.1. Диаметр окружности, перпендикулярный хорде, делит эту хорду пополам.

Доказательство: Если хорда является диаметром, то теорема очевидна.

Прямая проходящая через середину окружности

На рисунке 286 изображена окружность с центром Прямая проходящая через середину окружности, Прямая проходящая через середину окружности— точка пересечения диаметра Прямая проходящая через середину окружностии хорды Прямая проходящая через середину окружности. Надо доказать, что Прямая проходящая через середину окружности. Проведем радиусы Прямая проходящая через середину окружностии Прямая проходящая через середину окружности. В равнобедренном треугольнике Прямая проходящая через середину окружностиотрезок Прямая проходящая через середину окружности— высота, а значит, и медиана, т. е. Прямая проходящая через середину окружности.

Теорема 20.2. Диаметр окружности, делящий хорду, отличную от диаметра, пополам, перпендикулярен этой хорде.

Докажите эту теорему самостоятельно. Подумайте, будет ли верным это утверждение, если хорда является диаметром.

Прямая проходящая через середину окружности

На рисунке 287 изображены прямая и окружность, которые на рисунке 287, а не имеют общих точек, на рисунке 287, б имеют две общие точки, на рисунке 287, в — одну.

Определение. Прямую, имеющую с окружностью только одну общую точку, называют касательной к окружности.

Очевидно, что касательная к окружности имеет только одну общую точку с кругом, ограниченным этой окружностью. На рисунке 287, в прямая Прямая проходящая через середину окружности— касательная, Прямая проходящая через середину окружности— точка касания.

Прямая проходящая через середину окружности

Если отрезок (луч) принадлежит касательной к окружности и имеет с этой окружностью общую точку, то говорят, что отрезок (луч) касается окружности. Например, на рисунке 288 изображен отрезок Прямая проходящая через середину окружности, который касается окружности в точке Прямая проходящая через середину окружности.

Теорема 20.3 (свойство касательной). Касательная к окружности перпендикулярна радиусу, проведенному в точку касания.

Прямая проходящая через середину окружности

Доказательство: На рисунке 289 изображена окружность с центром Прямая проходящая через середину окружности, Прямая проходящая через середину окружности— точка касания прямой Прямая проходящая через середину окружностии окружности. Надо доказать, что Прямая проходящая через середину окружности.

Предположим, что это не так, то есть Прямая проходящая через середину окружности— наклонная к прямой Прямая проходящая через середину окружности. Тогда из точки Прямая проходящая через середину окружностиопустим перпендикуляр Прямая проходящая через середину окружностина прямую Прямая проходящая через середину окружности(рис. 289). Поскольку точка Прямая проходящая через середину окружности— единственная общая точка прямой а и круга с центром Прямая проходящая через середину окружности, то точка Прямая проходящая через середину окружностине принадлежит этому кругу. Отсюда Прямая проходящая через середину окружностиПрямая проходящая через середину окружности. Получили противоречие: перпендикуляр Прямая проходящая через середину окружностибольше наклонной Прямая проходящая через середину окружности. Следовательно, Прямая проходящая через середину окружности.

Теорема 20.4 (признак касательной к окружности). Если прямая, проходящая через точку окружности, перпендикулярна радиусу, проведенному в эту точку, то эта прямая является касательной к данной окружности.

Прямая проходящая через середину окружности

Доказательство: На рисунке 290 изображена окружность с центром в точке Прямая проходящая через середину окружности, отрезок Прямая проходящая через середину окружности— ее радиус, точка Прямая проходящая через середину окружностипринадлежит прямой Прямая проходящая через середину окружности, Прямая проходящая через середину окружности. Докажем, что прямая Прямая проходящая через середину окружности— касательная к окружности.

Прямая проходящая через середину окружности

Пусть прямая Прямая проходящая через середину окружностине является касательной, а имеет еще одну общую точку Прямая проходящая через середину окружностис окружностью (рис. 291). Тогда Прямая проходящая через середину окружности— равнобедренный ( Прямая проходящая через середину окружностии Прямая проходящая через середину окружностиравны как радиусы). Отсюда получаем противоречие: в треугольнике Прямая проходящая через середину окружностиесть два прямых угла. Следовательно, прямая Прямая проходящая через середину окружностиявляется касательной к окружности. Следствие. Если расстояние от центра окружности до некоторой прямой равно радиусу окружности, то эта прямая является касательной к данной окружности.

Часто при решении целого класса задач используют результат следующей задачи.

Если из данной точки к окружности проведены две касательные, то отрезки касательных, соединяющих данную точку с точками касания, равны.

Прямая проходящая через середину окружности

Решение:

На рисунке 292 изображена окружность с центром Прямая проходящая через середину окружности. Прямые Прямая проходящая через середину окружностии Прямая проходящая через середину окружности— касательные, Прямая проходящая через середину окружностии Прямая проходящая через середину окружности— точки касания. Надо доказать, что Прямая проходящая через середину окружности. Проведем радиусы Прямая проходящая через середину окружностии Прямая проходящая через середину окружностив точки касания. По свойству касательной Прямая проходящая через середину окружностии Прямая проходящая через середину окружности. В прямоугольных треугольниках Прямая проходящая через середину окружностии Прямая проходящая через середину окружностикатеты Прямая проходящая через середину окружностии Прямая проходящая через середину окружностиравны как радиусы одной окружности, Прямая проходящая через середину окружности— общая гипотенуза. Следовательно, Прямая проходящая через середину окружностипо гипотенузе и катету. Отсюда Прямая проходящая через середину окружности.

Общая схема решения задач на построение
Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Описанные и вписанные окружности
  • Плоские и пространственные фигуры
  • Взаимное расположение точек и прямых
  • Сравнение и измерение отрезков и углов
  • Решение треугольников
  • Треугольники и окружность
  • Площадь треугольника
  • Соотношения между сторонами и углами произвольного треугольника

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

💥 Видео

Найти центр кругаСкачать

Найти центр круга

Геометрия 8 класс (Урок№25 - Взаимное расположение прямой и окружности.)Скачать

Геометрия 8 класс (Урок№25 - Взаимное расположение прямой и окружности.)

Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Части круга и окружности #егэпрофиль #егэ #профиль #умскул #профильнаяматематикаСкачать

Части круга и окружности #егэпрофиль #егэ #профиль #умскул #профильнаяматематика

9 класс, 7 урок, Уравнение прямойСкачать

9 класс, 7 урок, Уравнение прямой

Найти центр и радиус окружностиСкачать

Найти центр и радиус окружности

№160. Прямая а проходит через середину отрезка АВ и перпендикулярна к нему. Докажите, что: а) каждаяСкачать

№160. Прямая а проходит через середину отрезка АВ и перпендикулярна к нему. Докажите, что: а) каждая

№203. Через центр О окружности, вписанной в треугольник ABC, проведена прямая ОK, перпендикулярнаяСкачать

№203. Через центр О окружности, вписанной в треугольник ABC, проведена прямая ОK, перпендикулярная

Теорема о числе точек пересечения двух окружностейСкачать

Теорема о числе точек пересечения двух окружностей

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи
Поделиться или сохранить к себе: