Прямая параллельна плоскости пи 1

Лекция 3. Плоскость
Содержание
  1. 3.1. Способы задания плоскости на ортогональных чертежах
  2. 3.2. Плоскости частного положения
  3. 3.3. Точка и прямая в плоскости. Принадлежность точки и прямой плоскости
  4. Упражнение
  5. 3.4. Главные линии плоскости
  6. 3.5. Взаимное положение прямой и плоскости
  7. 3.5.1. Параллельность прямой плоскости
  8. 3.5.2. Пересечение прямой с плоскостью
  9. Упражнение
  10. Упражнение
  11. 3.6. Определение видимости методом конкурирующих точек
  12. 3.7. Перпендикулярность прямой плоскости
  13. 3.8. Взаимное положение двух плоскостей
  14. 3.8.1. Параллельность плоскостей
  15. Упражнение
  16. 3.8.2. Пересечение плоскостей
  17. Упражнение
  18. Упражнение
  19. Упражнение
  20. Упражнение
  21. 3.8.3. Взаимно перпендикулярные плоскости
  22. Упражнение
  23. Упражнение
  24. 3.9. Задачи для самостоятельного решения
  25. Параллельные прямая и плоскость, признак и условия параллельности прямой и плоскости
  26. Параллельные прямые и плоскость – основные сведения
  27. Параллельность прямой и плоскости – признак и условия параллельности
  28. Признак параллельности прямой и плоскости

Видео:Параллельность прямой и плоскости. 10 класс.Скачать

Параллельность прямой и плоскости. 10 класс.

3.1. Способы задания плоскости на ортогональных чертежах

Рисунок 3.1 – Способы задания плоскостей

Плоскость общего положения – это плоскость, которая не параллельна и не перпендикулярна ни одной из плоскостей проекций.

Следом плоскости называется прямая, полученная в результате пересечения заданной плоскости с одной из плоскостей проекций.

Плоскость общего положения может иметь три следа: горизонтальный – απ1, фронтальный – απ2 и профильный – απ3, которые она образует при пересечении с известными плоскостями проекций: горизонтальной π1, фронтальной π2 и профильной π3 (Рисунок 3.2).

Прямая параллельна плоскости пи 1

Рисунок 3.2 – Следы плоскости общего положения

Видео:№124. Прямая PQ параллельна плоскости α. Через точки Р и Q проведены прямые, перпендикулярныеСкачать

№124. Прямая PQ параллельна плоскости α. Через точки Р и Q проведены прямые, перпендикулярные

3.2. Плоскости частного положения

Плоскость частного положения – плоскость, перпендикулярная или параллельная плоскости проекций.

Плоскость, перпендикулярная плоскости проекций, называется проецирующей и на эту плоскость проекций она будет проецироваться в виде прямой линии.

Свойство проецирующей плоскости : все точки, линии, плоские фигуры, принадлежащие проецирующей плоскости, имеют проекции на наклонном следе плоскости (Рисунок 3.3).

Прямая параллельна плоскости пи 1

Рисунок 3.3 – Фронтально-проецирующая плоскость, которой принадлежат: точки А, В, С; линии АС, АВ, ВС; плоскость треугольника АВС

Фронтально-проецирующая плоскость плоскость, перпендикулярная фронтальной плоскости проекций (Рисунок 3.4, а).

Горизонтально-проецирующая плоскость плоскость, перпендикулярная горизонтальной плоскости проекций (Рисунок 3.4, б).

Профильно-проецирующая плоскость плоскость, перпендикулярная профильной плоскости проекций.

Плоскости, параллельные плоскостям проекций, называются плоскостями уровня или дважды проецирующими плоскостями.

Фронтальная плоскость уровня плоскость, параллельная фронтальной плоскости проекций (Рисунок 3.4, в).

Горизонтальная плоскость уровня плоскость, параллельная горизонтальной плоскости проекций (Рисунок 3.4, г).

Профильная плоскость уровня плоскость, параллельная профильной плоскости проекций (Рисунок 3.4, д).

Прямая параллельна плоскости пи 1

Рисунок 3.4 – Эпюры плоскостей частного положения

Видео:Параллельность прямой к плоскостиСкачать

Параллельность прямой к плоскости

3.3. Точка и прямая в плоскости. Принадлежность точки и прямой плоскости

Точка принадлежит плоскости, если она принадлежит какой-либо прямой, лежащей в этой плоскости (Рисунок 3.5). Прямая принадлежит плоскости, если она имеет с плоскостью хотя бы две общие точки (Рисунок 3.6).

Прямая параллельна плоскости пи 1

Рисунок 3.5 – Принадлежность точки плоскости

Прямая параллельна плоскости пи 1

Рисунок 3.6 – Принадлежность прямой плоскости

left.beginalpha=mparallel n,\Dinalpha\Cinalpha\endright> Longrightarrow CDinalpha

Видео:6. Параллельность прямой и плоскостиСкачать

6. Параллельность прямой и плоскости

Упражнение

Прямая параллельна плоскости пи 1

Рисунок 3.7 – Решение задачи

Решение :

  1. ABCD – плоский четырехугольник, задающий плоскость.
  2. Проведём в нём диагонали AC и BD (Рисунок 3.7, б), которые являются пересекающимися прямыми, также задающими ту же плоскость.
  3. Согласно признаку пересекающихся прямых, построим фронтальную проекцию точки пересечения этих прямых — K: A2C2B2D2=K2.
  4. Восстановим линию проекционной связи до пересечения с горизонтальной проекцией прямой BD: на проекции диагонали B1D1 строим К1.
  5. Через А1К1 проводим проекцию диагонали А1С1.
  6. Точку С1 получаем, посредством линии проекционной связи до пересечения её с горизонтальной проекцией продолженной диагонали А1К1.

Видео:Прямая параллельная плоскостиСкачать

Прямая параллельная плоскости

3.4. Главные линии плоскости

В плоскости можно построить бесконечное множество прямых, но есть особые прямые, лежащие в плоскости, называемые главными линиями плоскости (Рисунок 3.8 – 3.11).

Прямой уровня или параллелью плоскости называется прямая, лежащая в данной плоскости и параллельная одной из плоскостей проекций.

Горизонталь или горизонтальная прямая уровня h (первая параллель) – это прямая, лежащая в данной плоскости и параллельная горизонтальной плоскости проекций (π1) (Рисунок 3.8, а; 3.9).

Фронталь или фронтальная прямая уровня f (вторая параллель) – это прямая лежащая в данной плоскости и параллельная фронтальной плоскости проекций (π2) (Рисунок 3.8, б; 3.10).

Профильная прямая уровня p (третья параллель) – это прямая лежащая в данной плоскости и параллельная профильной плоскости проекций (π3) (Рисунок 3.8, в; 3.11).

Прямая параллельна плоскости пи 1

Интерактивная модель Горизонталь плоскости
Прямая параллельна плоскости пи 1

Рисунок 3.8 а – Горизонтальная прямая уровня в плоскости, заданной треугольником

Прямая параллельна плоскости пи 1

Интерактивная модель Фронталь плоскости
Прямая параллельна плоскости пи 1

Рисунок 3.8 б – Фронтальная прямая уровня в плоскости, заданной треугольником

Прямая параллельна плоскости пи 1

Интерактивная модель Профильная прямая плоскости
Прямая параллельна плоскости пи 1

Рисунок 3.8 в – Профильная прямая уровня в плоскости, заданной треугольником

Прямая параллельна плоскости пи 1

Рисунок 3.9 – Горизонтальная прямая уровня в плоскости, заданной следами

Прямая параллельна плоскости пи 1

Рисунок 3.10 – Фронтальная прямая уровня в плоскости, заданной следами

Прямая параллельна плоскости пи 1

Рисунок 3.11 – Профильная прямая уровня в плоскости, заданной следами

Видео:10 класс, 6 урок, Параллельность прямой и плоскостиСкачать

10 класс, 6 урок, Параллельность прямой и плоскости

3.5. Взаимное положение прямой и плоскости

Прямая по отношению к заданной плоскости может быть параллельной и может с ней иметь общую точку, то есть пересекаться.

3.5.1. Параллельность прямой плоскости

Признак параллельности прямой плоскости : прямая параллельна плоскости, если она параллельна какой-либо прямой, принадлежащей этой плоскости (Рисунок 3.12).

alpha=mcap n\left.begina_2parallel m_2\a_1parallel m_1\endright> Rightarrow aparallelalpha

Прямая параллельна плоскости пи 1

Рисунок 3.12 – Параллельность прямой плоскости

3.5.2. Пересечение прямой с плоскостью

Для построения точки пересечения прямой с плоскостью общего положения (Рисунок 3.13), необходимо:

  1. Заключить прямую а во вспомогательную плоскость β (в качестве вспомогательной плоскости следует выбирать плоскости частного положения);
  2. Найти линию пересечения вспомогательной плоскости β с заданной плоскостью α;
  3. Найти точку пересечения заданной прямой а с линией пересечения плоскостей MN.

Прямая параллельна плоскости пи 1

Рисунок 3.13 – Построение точки встречи прямой с плоскостью

Видео:Построение параллельной плоскости на расстояние 30 мм.Скачать

Построение параллельной плоскости на расстояние 30 мм.

Упражнение

Заданы: прямая АВ общего положения, плоскость σ⊥π1. (Рисунок 3.14). Построить точку пересечения прямой АВ с плоскостью σ.

Решение :

    1. Точка К должна принадлежать прямой АВК1А1В и заданной плоскости σ ⇒ К1∈σ, следовательно, К1 находится в точке пересечения проекций А1В1 и σ1;
    2. Плоскость σ – горизонтально-проецирующая, следовательно, горизонтальной проекцией плоскости σ является прямая σ1 (горизонтальный след плоскости);
    3. Фронтальную проекцию точки К находим посредством линии проекционной связи: К2А2В2.

Прямая параллельна плоскости пи 1

Рисунок 3.14 – Пересечение прямой общего положения с плоскостью частного положения

Видео:Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)

Упражнение

Заданы: плоскость σ = ΔАВС – общего положения, прямая EF (Рисунок 3.15).

Требуется построить точку пересечения прямой EF с плоскостью σ.

Прямая параллельна плоскости пи 1

Рисунок 3.15 – Пересечение прямой с плоскостью

Решение:

  1. Заключим прямую EF во вспомогательную плоскость, в качестве которой воспользуемся горизонтально-проецирующей плоскостью α (Рисунок 3.15, а);
  2. Если α⊥π1, то на плоскость проекций π1 плоскость α проецируется в прямую (горизонтальный след плоскости απ1 или α1), совпадающую с E1F1;
  3. Найдём прямую пересечения (1-2) проецирующей плоскости α с плоскостью σ (решение подобной задачи будет рассмотрено ниже);
  4. Прямая (1-2) и заданная прямая EF лежат в одной плоскости α и пересекаются в точке K.

Алгоритм решения задачи (Рисунок 3.15, б): Через EF проведем вспомогательную плоскость α:

  1. left.beginalpha perp pi_1\alphain EF\endright> Longrightarrow alpha_1in E_1F_1
  2. alphacapsigma=(1-2)left.begin|alpha_1cap A_1C_1=1_1longrightarrow 1_2\|alpha_1cap A_1B_1=2_1longrightarrow 2_2\endright.
  3. (1_2-2_2)cap E_2F_2=K_2\left.beginKin EF\Kin (1-2)Rightarrow Kinsigma\endright>Longrightarrow K=EFcap (sigma =triangle ABC)

Видео:Математика без Ху!ни. Взаимное расположение прямой и плоскости.Скачать

Математика без Ху!ни.  Взаимное расположение прямой и плоскости.

3.6. Определение видимости методом конкурирующих точек

При оценке положения данной прямой, необходимо определить – точка какого участка прямой расположена ближе (дальше) к нам, как к наблюдателям, при взгляде на плоскость проекций π1 или π2.
Точки, которые принадлежат разным объектам, а на одной из плоскостей проекций их проекции совпадают (то есть, две точки проецируются в одну), называются конкурирующими на этой плоскости проекций.
Необходимо отдельно определить видимость на каждой плоскости проекций.
Видимость на π2 (рис. 3.15)
Выберем точки, конкурирующие на π2 – точки 3 и 4. Пусть точка 3∈ВС∈σ, точка 4∈EF.
Чтобы определить видимость точек на плоскости проекций π2 надо определить расположение этих точек на горизонтальной плоскости проекций при взгляде на π2.
Направление взгляда на π2 показано стрелкой.
По горизонтальным проекциям точек 3 и 4, при взгляде на π2, видно, что точка 41 располагается ближе к наблюдателю, чем 31.
41E1F1 ⇒ 4∈EF ⇒ на π2 будет видима точка 4, лежащая на прямой EF, следовательно, прямая EF на участке рассматриваемых конкурирующих точек расположена перед плоскостью σ и будет видима до точки K – точки пересечения прямой с плоскостью σ.
Видимость на π1.
Для определения видимости выберем точки, конкурирующие на π1 – точки 2 и 5.
Чтобы определить видимость точек на плоскости проекций π1 надо определить расположение этих точек на фронтальной плоскости проекций при взгляде на π1.
Направление взгляда на π1 показано стрелкой.
По фронтальным проекциям точек 2 и 5, при взгляде на π1, видно, что точка 22 располагается ближе к наблюдателю, чем 52.
22А2В2 ⇒ 2∈АВ ⇒ на π1 будет видима точка 2, лежащая на прямой АВ, следовательно, прямая EF на участке рассматриваемых конкурирующих точек расположена под плоскостью σ и будет невидима до точки K – точки пересечения прямой с плоскостью σ.
Видимой из двух конкурирующих точек будет та, у которой координата «Z» или(и) «Y» больше.

Видео:№57. Прямая а параллельна одной из двух параллельных плоскостей. Докажите, что прямаяСкачать

№57. Прямая а параллельна одной из двух параллельных плоскостей. Докажите, что прямая

3.7. Перпендикулярность прямой плоскости

Признак перпендикулярности прямой плоскости : прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в данной плоскости.

Прямая параллельна плоскости пи 1

Рисунок 3.16 – Задание прямой, перпендикулярной плоскости

Теорема. Если прямая перпендикулярна плоскости, то на эпюре: горизонтальная проекции прямой перпендикулярна горизонтальной проекции горизонтали плоскости, а фронтальная проекция прямой перпендикулярна фронтальной проекции фронтали (Рисунок 3.16, б)

Теорема доказывается через теорему о проецировании прямого угла в частном случае.

Если плоскость задана следами, то проекции прямой перпендикулярной плоскости перпендикулярны соответствующим следам плоскости (Рисунок 3.16, а).

Пусть прямая p перпендикулярна плоскости σ=ΔАВС и проходит через точку K.

Видео:Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

3.8. Взаимное положение двух плоскостей

3.8.1. Параллельность плоскостей

Две плоскости могут быть параллельными и пересекающимися между собой.

Признак параллельности двух плоскостей : две плоскости взаимно параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости.

Видео:Построение недостающей проекции плоскости. Принадлежность прямой к плоскостиСкачать

Построение недостающей проекции плоскости. Принадлежность прямой к плоскости

Упражнение

Задана плоскость общего положения α=ΔАВС и точка F∉α (Рисунок 3.17).

Через точку F провести плоскость β, параллельную плоскости α.

Прямая параллельна плоскости пи 1

Рисунок 3.17 – Построение плоскости, параллельной заданной

Решение : В качестве пересекающихся прямых плоскости α возьмем, например, стороны треугольника АВ и ВС.

  1. Через точку F проводим прямую m, параллельную, например, АВ.
  2. Через точку F, или же через любую точку, принадлежащую m, проводим прямую n, параллельную, например, ВС, причём m∩n=F.
  3. β = m∩n и β//α по определению.
Интерактивная модель Параллельность двух плоскостей
Прямая параллельна плоскости пи 1

3.8.2. Пересечение плоскостей

Результатом пересечения 2-х плоскостей является прямая. Любая прямая на плоскости или в пространстве может быть однозначно задана двумя точками. Поэтому для того, чтобы построить линию пересечения двух плоскостей, следует найти две точки, общие для обеих плоскостей, после чего соединить их.

Рассмотрим примеры пересечения двух плоскостей при различных способах их задания: следами; тремя точками, не лежащими на одной прямой; параллельными прямыми; пересекающимися прямыми и др.

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Упражнение

Рисунок 3.18 – Пересечение плоскостей общего положения, заданных следами

Порядок построения линии пересечения плоскостей:

  1. Найти точку пересечения горизонтальных следов — это точка М (её проекции М1 и М2, при этом М1, т.к. М – точка частного положения, принадлежащая плоскости π1).
  2. Найти точку пересечения фронтальных следов — это точка N (её проекции N1 и N2, при этом N2=N, т.к. N – точка частного положения, принадлежащая плоскости π2).
  3. Построить линию пересечения плоскостей, соединив одноименные проекции полученных точек: М1N1 и М2N2.

МN – линия пересечения плоскостей.

Видео:Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.Скачать

Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.

Упражнение

Решение:
Так как плоскость α пересекает стороны АВ и АС треугольника АВС, то точки пересечения K и L этих сторон с плоскостью α являются общими для обеих заданных плоскостей, что позволит, соединив их, найти искомую линию пересечения.
Точки могут быть найдены как точки пересечения прямых с проецирующей плоскостью: находим горизонтальные проекции точек K и L, то есть K1 и L1 , на пересечении горизонтального следа (α1) заданной плоскости α с горизонтальными проекциями сторон ΔАВС: А1В1 и A1C1. После чего посредством линий проекционной связи находим фронтальные проекции этих точек K2 и L2 на фронтальных проекциях прямых АВ и АС. Соединим одноимённые проекции: K1 и L1; K2 и L2. Линия пересечения заданных плоскостей построена.

Алгоритм решения задачи :

left.beginABcapsigma=K\ACcapsigma=L\endright> left.beginRightarrow A_1B_1capsigma_1=K_1 rightarrow K_2\Rightarrow A_1C_1cap sigma_1=L_1 rightarrow L_2\endright.

KL – линия пересечения ΔАВС и σ (α∩σ = KL).

Прямая параллельна плоскости пи 1

Рисунок 3.19 – Пересечение плоскостей общего и частного положения

Видео:Точка встречи прямой с плоскостьюСкачать

Точка встречи прямой с плоскостью

Упражнение

Рисунок 3.20 – Пересечение двух плоскостей общего положения (общий случай)

Алгоритм решения задачи :

left.beginalphacapsigma=(4-5)\betacapsigma=(3-2)\endright>\left.beginalphacaptau=(6-7)\betacaptau=(1-8)\endright>left.begin(4_1-5_1)cap(3_1-2_1)=M_1rightarrow M_2\(6_1-7_1)cap(1_1-8_1)=N_1rightarrow N_2\endright>rightarrow\left.beginM_1N_1\M_2N_2\endright>Rightarrowalphacapbeta=MN

Видео:Перпендикулярность прямой и плоскости. 10 класс.Скачать

Перпендикулярность прямой и плоскости. 10 класс.

Упражнение

Заданы плоскости α = ΔАВС и β = a//b. Построить линию пересечения заданных плоскостей (Рисунок 3.21).

Прямая параллельна плоскости пи 1

Рисунок 3.21 Решение задачи на пересечение плоскостей

Решение: Воспользуемся вспомогательными секущими плоскостями частного положения. Введём их так, чтобы сократить количество построений. Например, введём плоскость σ⊥π2, заключив прямую a во вспомогательную плоскость σ (σ∈a). Плоскость σ пересекает плоскость α по прямой (1-2), а σ∩β=а. Следовательно (1-2)∩а=K. Точка К принадлежит обеим плоскостям α и β. Следовательно, точка K, является одной из искомых точек, через которые проходит прямая пересечения заданных плоскостей α и β. Для нахождения второй точки, принадлежащей прямой пересечения α и β, заключим прямую b во вспомогательную плоскость τ⊥π2 (τb). Соединив точки K и L, получим прямую пересечения плоскостей α и β.

Видео:22. Взаимное расположение прямой и плоскости в пространствеСкачать

22. Взаимное расположение прямой и плоскости в пространстве

3.8.3. Взаимно перпендикулярные плоскости

Плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой.

Видео:Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Упражнение

Задана плоскость σ⊥π2 и прямая общего положения – DE (Рисунок 3.22)

Требуется построить через DE плоскость τ⊥σ.

Прямая параллельна плоскости пи 1

Рисунок 3.22 – Построение плоскости, перпендикулярной к заданной плоскости

По теореме о проецировании прямого угла C1D1 должна быть параллельна оси проекций. Пересекающиеся прямые CD∩DE задают плоскость τ. Итак, τ⊥σ. Аналогичные рассуждения, в случае плоскости общего положения.

Видео:Принадлежность прямой плоскостиСкачать

Принадлежность прямой плоскости

Упражнение

Рисунок 3.23 – Построение плоскости, перпендикулярной к заданной ΔАВС

3.9. Задачи для самостоятельного решения

1. Задана плоскость α = m//n (Рисунок 3.24). Известно, что K∈α.

Постройте фронтальную проекцию точки К.

Прямая параллельна плоскости пи 1

2. Постройте следы прямой, заданной отрезком CB, и определите квадранты, через которые она проходит (Рисунок 3.25).

Прямая параллельна плоскости пи 1

3. Постройте проекции квадрата, принадлежащего плоскости α⊥π2, если его диагональ MN //π2 (Рисунок 3.26).

Прямая параллельна плоскости пи 1

4. Построить прямоугольник ABCD с большей стороной ВС на прямой m, исходя из условия, что отношение его сторон равно 2 (Рисунок 3.27).

Прямая параллельна плоскости пи 1

5. Задана плоскость α=a//b (Рисунок 3.28). Построить плоскость β параллельную плоскости α и удаленную от нее на расстоянии 20 мм.

Прямая параллельна плоскости пи 1

6. Задана плоскость α=∆АВС и точка D вне плоскости. Построить через точку D плоскость β⊥α и β⊥π1.

7. Задана плоскость α=∆АВС и точка D вне плоскости. Построить через точку D прямую DE//α и DE//π1.

Параллельные прямая и плоскость, признак и условия параллельности прямой и плоскости

Статья рассматривает понятия параллельность прямой и плоскости. Будут рассмотрены основные определения и приведены примеры. Рассмотрим признак параллельности прямой к плоскости с необходимыми и достаточными условиями параллельности, подробно решим примеры заданий.

Параллельные прямые и плоскость – основные сведения

Прямая и плоскость называются параллельными, если не имеют общих точек, то есть не пересекаются.

Параллельность обозначается « ∥ ». Если в задании по условию прямая a и плоскость α параллельны, тогда обозначение имеет вид a ∥ α . Рассмотрим рисунок, приведенный ниже.

Прямая параллельна плоскости пи 1

Считается, что прямая a , параллельная плоскости α и плоскость α , параллельная прямой a , равнозначные, то есть прямая и плоскость параллельны друг другу в любом случае.

Параллельность прямой и плоскости – признак и условия параллельности

Не всегда очевидно, что прямая и плоскость параллельны. Зачастую это нужно доказать. Необходимо использовать достаточное условие, которое даст гарантию на параллельность. Такой признак имеет название признака параллельности прямой и плоскости. Предварительно рекомендуется изучить определение параллельных прямых.

Если заданная прямая a , не лежащая в плоскости α , параллельна прямой b , которая принадлежит плоскости α , тогда прямая a параллельна плоскости α .

Рассмотрим теорему, используемую для установки параллельности прямой с плоскостью.

Если одна из двух параллельных прямых параллельна плоскости, то другая прямая лежит в этой плоскости либо параллельна ей.

Подробное доказательство рассмотрено в учебнике 10 — 11 класса по геометрии. Необходимым и достаточным условием параллельности прямой с плоскостью возможно при наличии определения направляющего вектора прямой и нормального вектора плоскости.

Для параллельности прямой a , не принадлежащей плоскости α , и данной плоскости необходимым и достаточным условием является перпендикулярность направляющего вектора прямой с нормальным вектором заданной плоскости.

Условие применимо, когда необходимо доказать параллельность в прямоугольной системе координат трехмерного пространства. Рассмотрим подробное доказательство.

Допустим, прямая а в систему координат О х у задается каноническими уравнениями прямой в пространстве , которые имеют вид x — x 1 a x = y — y 1 a y = z — z 1 a z или параметрическими уравнениями прямой в пространстве x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ , плоскостью α с общими уравнениями плоскости A x + B y + C z + D = 0 .

Отсюда a → = ( a x , a y , a z ) является направляющим вектором с координатами прямой а, n → = ( A , B , C ) — нормальным вектором заданной плоскости альфа.

Чтобы доказать перпендикулярность n → = ( A , B , C ) и a → = ( a x , a y , a z ) , нужно использовать понятие скалярного произведения. То есть при произведении a → , n → = a x · A + a y · B + a z · C результат должен быть равен нулю из условия перпендикулярности векторов.

Значит, что необходимым и достаточным условием параллельности прямой и плоскости запишется так a → , n → = a x · A + a y · B + a z · C . Отсюда a → = ( a x , a y , a z ) является направляющим вектором прямой a с координатами, а n → = ( A , B , C ) — нормальным вектором плоскости α .

Определить, параллельны ли прямая x = 1 + 2 · λ y = — 2 + 3 · λ z = 2 — 4 · λ с плоскостью x + 6 y + 5 z + 4 = 0 .

Получаем, что предоставленная прямая не принадлежит плоскости, так как координаты прямой M ( 1 , — 2 , 2 ) не подходят. При подстановке получаем, что 1 + 6 · ( — 2 ) + 5 · 2 + 4 = 0 ⇔ 3 = 0 .

Необходимо проверить на выполнимость необходимое и достаточное условие параллельности прямой и плоскости. Получим, что координаты направляющего вектора прямой x = 1 + 2 · λ y = — 2 + 3 · λ z = 2 — 4 · λ имеют значения a → = ( 2 , 3 , — 4 ) .

Нормальным вектором для плоскости x + 6 y + 5 z + 4 = 0 считается n → = ( 1 , 6 , 5 ) . Перейдем к вычислению скалярного произведения векторов a → и n → . Получим, что a → , n → = 2 · 1 + 3 · 6 + ( — 4 ) · 5 = 0 .

Значит, перпендикулярность векторов a → и n → очевидна. Отсюда следует, что прямая с плоскостью являются параллельными.

Ответ: прямая с плоскостью параллельны.

Определить параллельность прямой А В в координатной плоскости О у z , когда даны координаты A ( 2 , 3 , 0 ) , B ( 4 , — 1 , — 7 ) .

По условию видно, что точка A ( 2 , 3 , 0 ) не лежит на оси О х , так как значение x не равно 0 .

Для плоскости O x z вектор с координатами i → = ( 1 , 0 , 0 ) считается нормальным вектором данной плоскости. Обозначим направляющий вектор прямой A B как A B → . Теперь при помощи координат начала и конца рассчитаем координаты вектора A B . Получим, что A B → = ( 2 , — 4 , — 7 ) . Необходимо выполнить проверку на выполнимость необходимого и достаточного условия векторов A B → = ( 2 , — 4 , — 7 ) и i → = ( 1 , 0 , 0 ) , чтобы определить их перпендикулярность.

Запишем A B → , i → = 2 · 1 + ( — 4 ) · 0 + ( — 7 ) · 0 = 2 ≠ 0 .

Отсюда следует, что прямая А В с координатной плоскостью О y z не являются параллельными.

Ответ: не параллельны.

Не всегда заданное условие способствует легкому определению доказательства параллельности прямой и плоскости. Появляется необходимость в проверке принадлежности прямой a плоскости α . Существует еще одно достаточное условие, при помощи которого доказывается параллельность.

При заданной прямой a с помощью уравнения двух пересекающихся плоскостей A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 , плоскостью α — общим уравнением плоскости A x + B y + C z + D = 0 .

Необходимым и достаточным условием для параллельности прямой a и плоскости α яляется отсутствие решений системы линейных уравнений, имеющей вид A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A x + B y + C z + D = 0 .

Из определения следует, что прямая a с плоскостью α не должна иметь общих точек, то есть не пересекаться, только в этом случае они будут считаться параллельными. Значит, система координат О х у z не должна иметь точек, принадлежащих ей и удовлетворяющих всем уравнениям:

A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 , а также уравнению плоскости A x + B y + C z + D = 0 .

Следовательно, система уравнений, имеющая вид A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A x + B y + C z + D = 0 , называется несовместной.

Верно обратное: при отсутствии решений системы A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A x + B y + C z + D = 0 не существует точек в О х у z , удовлетворяющих всем заданным уравнениям одновременно. Получаем, что нет такой точки с координатами, которая могла бы сразу быть решениями всех уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 и уравнения A x + B y + C z + D = 0 . Значит, имеем параллельность прямой и плоскости, так как отсутствуют их точки пересечения.

Система уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A x + B y + C z + D = 0 не имеет решения, когда ранг основной матрицы меньше ранга расширенной. Это проверяется теоремой Кронекера-Капелли для решения линейных уравнений. Можно применять метод Гаусса для определения ее несовместимости.

Доказать , что прямая x — 1 = y + 2 — 1 = z 3 параллельна плоскости 6 x — 5 y + 1 3 z — 2 3 = 0 .

Для решения данного примера следует переходить от канонического уравнения прямой к виду уравнения двух пересекающихся плоскостей. Запишем это так:

x — 1 = y + 2 — 1 = z 3 ⇔ — 1 · x = — 1 · ( y + 2 ) 3 · x = — 1 · z 3 · ( y + 2 ) = — 1 · z ⇔ x — y — 2 = 0 3 x + z = 0

Чтобы доказать параллельность заданной прямой x — y — 2 = 0 3 x + z = 0 с плоскостью 6 x — 5 y + 1 3 z — 2 3 = 0 , необходимо уравнения преобразовать в систему уравнений x — y — 2 = 0 3 x + z = 0 6 x — 5 y + 1 3 z — 2 3 = 0 .

Видим, что она не решаема, значит прибегнем к методу Гаусса.

Расписав уравнения, получаем, что 1 — 1 0 2 3 0 1 0 6 — 5 1 3 2 3

1 — 1 0 2 0 3 1 — 6 0 1 1 3 — 11 1 3

1 — 1 0 2 0 3 1 — 6 0 0 0 — 9 1 3 .

Отсюда делаем вывод, что система уравнений является несовместной, так как прямая и плоскость не пересекаются, то есть не имеют общих точек.

Делаем вывод, что прямая x — 1 = y + 2 — 1 = z 3 и плоскость 6 x — 5 y + 1 3 z — 2 3 = 0 параллельны, так как было выполнено необходимое и достаточное условие для параллельности плоскости с заданной прямой.

Ответ: прямая и плоскость параллельны.

Признак параллельности прямой и плоскости

Прямая параллельна плоскости, если она параллельна прямой, принадлежащей плоскости. Для комплексного чертежа признак параллельности прямой и плоскости таков: если проекции прямой параллельны соответствующим проекциям другой прямой, принадлежащей плоскости, то прямая параллельна плоскости. На рис. 6.18 прямая d параллельна плоскости Q(A, [ВС]):

Прямая параллельна плоскости пи 1 Прямая параллельна плоскости пи 1

Прямая параллельна плоскости пи 1

Для проецирующей плоскости признак параллельности можно сформулировать следующим образом: если проекция прямой параллельна проецирующей плоскости, проекция которой изображается в виде прямой линии, то прямая параллельна плоскости. Таким образом, в данном случае достаточно лишь удовлетворить условие параллельности для той проекции, относительно которой заданная плоскость перпендикулярна. На рис. 6.19 показан комплексный чертеж для прямой, параллельной фронтально проецирующей плоскости:

Прямая параллельна плоскости пи 1

Задание: построить фронтальную проекцию отрезка ВС, параллельного плоскости С1 П Ь) (рис. 6.20). Определить видимость отрезка.

Прямая параллельна плоскости пи 1

Прямая параллельна плоскости пи 1

Решение. На основании признака параллельности прямой и плоскости необходимо провести проекции прямой, параллельной любой прямой в плоскости (рис. 6.21). При решении задачи достаточно в плоскости С1(а П Ь) провести прямую, параллельную горизонтальной проекции отрезка ВС. Затем определить фронтальную проекцию этой прямой, параллельно которой по линии связи определить фронтальную проекцию отрезка ВС. После определения видимости задача будет считаться решенной.

На рис. 6.21 горизонтальная проекция прямой, принадлежащей плоскости Q(a П Ъ), конкурирует с отрезком ВС. По линиям связи точек D и Е определяем фронтальную проекцию прямой, принадлежащей плоскости. Далее параллельно (по линиям связи) откладываем фронтальную проекцию отрезка ВС. Она будет принадлежать фронтальной проекции плоскости, поэтому и сам отрезок кажется принадлежащим плоскости, что не будет верным решением.

Видимость определяем по конкурирующим точкам. Для этого удлиним проекции прямой b до пересечения с фронтальной проекцией отрезка ВС. Точку 2 отметим на прямой b, а точку 1 — на отрезке ВС. По горизонтальной проекции определим, что на фронтальной проекции видима точка 2, принадлежащая плоскости, а это значит, что отрезок будет невидимым, т. е. находится под плоскостью. Поэтому проекцию отрезка В2С2 показываем невидимой. Понятно, что и горизонтальная проекция отрезка тоже будет невидимой.

Поделиться или сохранить к себе: