на проектно-исследовательскую работу по математике ученика 8 класса «А» МБОУ «Гимназии №20» Губенко П. на тему: «Прямая Эйлера, окружность Эйлера».
Руководитель: учитель математики Родионова Н.Е.
Актуальность данной темы подтверждается множеством причин. Рассматриваемые в научно-исследовательской работе вопросы актуальны в связи с проведением государственной итоговой аттестации и единого государственного экзамена по математике, в котором всегда встречается решение систем уравнений. Кроме того, данная тема изучается на первом курсе университета при изучении курса высшей математики. Что будет способствовать лучшему пониманию и усвоению материала. Также умение решать системы уравнений методом Крамера, например, дает возможность быстрее решать системы уравнений с параметром. Данная тема представляет собой практический интерес, так как ее можно реализовать с помощью компьютерной программы Excel, что особенно вызывает заинтересованность у учащихся.
Проектно-исследовательская работа состоит из двух глав, в свою очередь делящихся на 5 и 4 параграфа каждая, а также введения, заключения, списка использованной литературы и приложения. Оформление проектно-исследовательской работы соответствует принятым стандартам.
Во введении обоснована актуальность исследования, цели и задачи работы, теоретическая и практическая значимость работы. Цели и задачи проектно-исследовательской работы сформулированы грамотно, соответствуют заявленной теме.
В первой главе работы рассматриваются теоретические вопросы. Даны основные понятия и определения, которыми учащийся пользуется при изучении темы. На высоком уровне изложен материал по теме исследовательской работы. Видно, что Иван проанализировал большое количество учебников по заданной тематике, провел грамотный анализ ресурсов, использовал только достоверные данные. Перед учеником стояла сложная задача написания теоретической части работы, так как успех понимания материала зависел во многом от трудолюбия ребенка и умения «правильно» воспринимать математический язык. Всю теоретическую часть ученик писал самостоятельно, на основе собственных знаний и исследований.
Вторая глава проектно-исследовательской работы — практическая. Она содержит большое количество разобранных примеров на каждый метод решения систем линейных алгебраических уравнений, причем, которые имеют различное количество решений. Иван воплотил идею реализации решения систем линейных алгебраических уравнений в Excel, им разработано программное приложение, в котором он реализует все методы. Ученик самостоятельно разобрался с программой, смог выстроить алгоритм решения в электронной среде. Особое внимание практической части работы заслуживает умение применить способы решения систем линейных алгебраических уравнений для задач повышенной сложности: решений систем уравнений с параметром, сложных экономических задач.
В результате написания работы ученик грамотно изложил результаты исследования, на основе проделанного исследования, он сделал выводы о достоинствах и недостатках каждого из методов.
Предложенный в заключении задачник будет полезен учащимся, которые самостоятельно изучали данную тему и хотят выяснить усвоили ли они этот материал.
Работа построена последовательно, следование глав — логично. Работа оформлена в соответствии с требованиями к научно-исследовательской работе.
Работа заслуживает внимания и высокой оценки со стороны экспертной комиссии.
Название: Прямая Эйлера Раздел: Рефераты по математике Тип: реферат Добавлен 07:30:06 24 марта 2008 Похожие работы Просмотров: 2665 Комментариев: 25 Оценило: 9 человек Средний балл: 4.4 Оценка: 4 Скачать
Деление отрезка в данном отношении.
Теорема о пересечении медиан треугольника в одной точке.
Теорема о высотах произвольного треугольника.
Прямая Эйлера тетраэдра.
Использованные источники информации.
Свойства треугольника были хорошо изучены еще древними греками.
В знаменитых “Началах” Евклида доказывается, что центром окружности, описанной около треугольника, является точка пересечения серединных перпендикуляров к его сторонам.
Архимед, определяя положение центра тяжести однородной треугольной пластинки, установил, что он лежит на каждой из трех медиан. Точку пересечения медиан треугольника называют центром тяжести или центроидом треугольника.
Позднее было доказано, что три высоты треугольника также пересекаются в одной точке, которая называется его ортоцентром.
Закономерность в расположении этих трех замечательных точек треугольника – центра O описанной окружности, центроида G , ортоцентра H – впервые обнаружил знаменитый математик Леонард Эйлер (1707-1783).
Рассмотрим сначала один частный случай: прямоугольный треугольник ABC(рис.1). СерединаO гипотенузы AB является центром описанной около него окружности. Центроид G делит медиану CO в отношении 1:2, считая от вершины C. Катеты AC иBC являются высотами треугольника, поэтому вершина C прямого угла совпадает с ортоцентром H треугольника. Таким образом, точки O,G,H лежат на одной прямой, причем OH=3OG. Пользуясь методом координат, Эйлер доказал, что такая же связь существует между тремя указанными точками любого треугольника. Мы докажем этот факт с помощью векторов.
Деление отрезка в данном отношении.
Пусть A,B,O – данные точки плоскости, и известно, что
Выразим вектор OG черезвекторыOA иOB. Для этого подставим в равенство AG=k * GB выражения всех векторов через OG, OA иOB: OG-OA=k(OB-OG). Решая это уравнение относительно OG , получим:
Теорема о пересечении медиан треугольника в одной точке.
Здесь мы попутно получим одно векторное равенство, которое понадобится нам в дальнейшем.
Теорема 1.Медианы треугольника АВС пересекаются в одной точкеGи делятся ею в отношении 2:1, считая от вершины, причем
гдеP – любая точка плоскости или пространства.
Доказательство. Возьмем на медиане CD треугольника ABC точку G, определяемую соотношением |CG|:|GD|=2:1 (рис. 3).
Вычисляя вектор PG’ с концом в точкеG’, делящей любую из двух других медиан треугольника в отношении 2:1 (считая от вершины), мы получим то же самое выражение:
Поэтому PG’=PG, и точка G’ совпадает с точкой G. Следовательно, все три медианы треугольника пересекаются в одной точке G, определяемой соотношением (2).
Теорема о высотах произвольного треугольника.
Теорема 2.Высоты треугольника АВС пересекаются в одной точке Н, причем
где О – центр окружности описанной около треугольника.
Доказательство. Пусть АВС – треугольник, отличный от прямоугольного (рис.4).
Найдем сумму векторов OAиOB. Для этого построим точку M, симметричную О относительно стороны AB, тогда OM = OA + OB. Затем построим точку Н, для которой
OH = OM + OC = OA + OB +OC,
и докажем, что точка H и есть ортоцентр треугольникаАВС.
Действительно, по построению прямые CH и OM параллельны, OM – серединный перпендикуляр к отрезку АВ, следовательно, прямая СН также перпендикулярна к прямой AB, и точка H лежит на высоте треугольника ABC, проведенной из вершины C.
Если повторить построение, начиная с векторов OAиOC, то получится та же точка H, но те же рассуждения показывают, что теперь точка H лежит на высоте треугольника, проведенной из вершины B. Аналогично получим, что точка H лежит на высоте, проведенной из вершины A. Следовательно, высоты треугольника ABC пересекаются в точке H, определяемой соотношением(3).
Легко проверить, что теорема 2 справедлива и для прямоугольного треугольника.
Из доказанных теорем 1 и 2 вытекает интересующее нас свойство замечательных точек треугольника.
Теорема 3.Центр О описанной окружности, центроидGи ортоцентрHлюбого треугольника лежат на одной прямой, причем точкаGлежит между точками О и Н иOG:GH = 1:2.
Доказательство. По теореме 1
Сравнивая это равенство с равенством (3), получим
Следовательно, векторы OHиOG, имеющие общее начало O, расположены на одной прямой и |OG| : |GH| = 1 : 2.
Прямая, на которой лежат точки O, GиH, называется прямой Эйлера.
В стереометрии простейший многогранник – тетраэдр играет ту же роль, что и треугольник в планиметрии. Свойства треугольника и тетраэдра во многом схожи. Попробуем распространить свойство замечательных точек треугольника на тетраэдр.
Сфера, описанная около тетраэдра.
Известно, что около всякого тетраэдра можно описать сферу, её центр O лежит на перпендикулярах к граням тетраэдра, восстановленных в центрах окружностей, описанных около граней.
Отрезок, соединяющий вершину тетраэдра с центроидом противоположной грани, называется медианой тетраэдра. Свойства медиан тетраэдра аналогичны свойствам медиан треугольника.
Теорема 4.Четыре медианы тетраэдраABCDпересекаются в одной точкеG,которая делит каждую из них в отношении 3:1, считая от вершины тетраэдра, причем
Учитывая, что центроид G’ треугольника ABC удовлетворяет соотношению 3PG = PA + PB + PC, получим
Вычисляя вектор PG’’ с концом в точке G’’ , делящей любую из трех других медиан тетраэдра в отношении 3 : 1 (считая от вершины), получим то же самое выражение. А это означает, что все четыре медианы тетраэдра пересекаются в одной точке G, удовлетворяющей соотношению (4). Точка G, называется
центром тяжести (или центроидом) тетраэдра.
Высоты треугольника всегда пересекаются в одной точке. По аналогии можно предположить, что высоты любого тетраэдра также пересекаются в одной точке. Однако это не так.
Для примера рассмотрим тетраэдр ABCD с прямым двугранным углом при ребре AB, в котором AC = BC, но AD = BD(рис. 6). Высоты CEиDF тетраэдра лежат соответственно в гранях ABCиABD, но точка E – середина AB, а F – нет. Если бы длины ребер DAиDB были равны, то основания EиF совпадали бы, но две другие высоты тетраэдра не могут проходить через точку E.
Таким образом, даже две высоты тетраэдра могут не иметь общей точки.
Тем не менее существуют и тетраэдры, все четыре высоты которых пересекаются в одной точке. Таким будет, например, тетраэдр ABCD с прямыми плоскими углами при вершине D. Ребра DA, DBиDC являются его высотами, а вершина D –ортоцентром(точкой пересечения всех четырех высот).
Попробуем найти все тетраэдры, у которых высоты пересекаются в одной точке.
Пусть высоты тетраэдра ABCD, проведенные из вершин CиD , пересекаются в точке H
(рис. 7). Тогда CH’__AB и DH’’__AB, т.е. прямая AB перпендикулярна к двум пересекающимся прямым лежащим в плоскости CDH, следовательно, AB__BC. Аналогично доказывается, что если две другие высоты тетраэдра ABCD проходят через ту же точку H, то AC__BD и AD__BC. Итак, если все высоты тетраэдра пересекаются в одной точке, то противоположные ребра тетраэдра взаимно перпендикулярны. Такой тетраэдр называется ортоцентрическим.
Теорема 5.Четыре высоты ортоцентрического тетраэдраABCDпересекается в одной точкеH,причем еслиO –центр сферы, описанной около тетраэдра, то
Доказательство. Пусть ABCD – ортоцентрический тетраэдр, DG’ – его медиана, DH’ – его высота (рис.8). Тогда G’ центроид, а H’- ортоцентр треугольника ABC, причем точки O’(центр окружности, описанной около треугольникаABC), G’иH’ лежат на одной прямой. Заметим, что центр O сферы, описанной около тетраэдраABCD, лежит на перпендикуляре к плоскости треугольника ABC, восстановленном в точке O’.
Будем доказывать теорему тем же способом, что и теорему 2 для треугольника: строить разными способами точку H, удовлетворяющую соотношению(5).
или G’M = 2OG’ . Точки O’,G’,H’, лежат на прямой Эйлера треугольника ABC, причем H’G’ = 2G’O’. Следовательно,
Отсюда вытекает, что прямые H’MиOO’ параллельны, а так как прямая OO’ перпендикулярна к плоскости ABC, то и прямая H’M перпендикулярна к этой плоскости. Следовательно, точка M’ лежит на прямой DH’(если точкиOиO’совпадают, то точкиMиH’тоже совпадают).
Из левого равенства следует, что точка H является серединой отрезка DM, т.е. точка H лежит на DH’ тетраэдра.
Аналогично строится точка N: ON=OA+OB+OD и та же точка H: OH= —(ON+OC) и доказывается, что точка H лежит на высоте тетраэдра, проведенной из вершины C, и т.д.
Следовательно, высоты ортоцентрического тетраэдра пересекаются в одной точке H, определяемой соотношением (5).
Прямая Эйлера тетраэдра.
Теорема 6.Центр О описанной сферы, центроидGи ортоцентр Н ортоцентрического тетраэдраABCDлежат на одной прямой, причем точки О и Н симметричны относительно точкиG.
Доказательство. По формулам (4) и (5)
откуда OH=2OG. Полученное равенство означает, что точки O, G, H лежат на одной прямой, причем точки О иН симметричны относительно точки G.
Прямую, на которой лежат точки O, G, H, можно назвать прямой Эйлера ортоцентрического тетраэдра.
В данном реферате собран материал необходимый для выявления прямой Эйлера и прямой Эйлера тетраэдра .
Использованные источники информации:
Видео:Окружность Эйлера (окружность 9 точек) и прямая ЭйлераСкачать
Реферат: Прямая Эйлера
Деление отрезка в данном отношении.
Теорема о пересечении медиан треугольника в одной точке.
Теорема о высотах произвольного треугольника.
Прямая Эйлера тетраэдра.
Использованные источники информации.
Свойства треугольника были хорошо изучены еще древними греками.
В знаменитых “Началах” Евклида доказывается, что центром окружности, описанной около треугольника, является точка пересечения серединных перпендикуляров к его сторонам.
Архимед, определяя положение центра тяжести однородной треугольной пластинки, установил, что он лежит на каждой из трех медиан. Точку пересечения медиан треугольника называют центром тяжести или центроидом треугольника.
Позднее было доказано, что три высоты треугольника также пересекаются в одной точке, которая называется его ортоцентром.
Закономерность в расположении этих трех замечательных точек треугольника – центра O описанной окружности, центроида G , ортоцентра H – впервые обнаружил знаменитый математик Леонард Эйлер (1707-1783).
Рассмотрим сначала один частный случай: прямоугольный треугольник ABC(рис.1). СерединаO гипотенузы AB является центром описанной около него окружности. Центроид G делит медиану CO в отношении 1:2, считая от вершины C. Катеты AC иBC являются высотами треугольника, поэтому вершина C прямого угла совпадает с ортоцентром H треугольника. Таким образом, точки O,G,H лежат на одной прямой, причем OH=3OG. Пользуясь методом координат, Эйлер доказал, что такая же связь существует между тремя указанными точками любого треугольника. Мы докажем этот факт с помощью векторов.
Деление отрезка в данном отношении.
Пусть A,B,O – данные точки плоскости, и известно, что
Выразим вектор OG черезвекторыOA иOB. Для этого подставим в равенство AG=k * GB выражения всех векторов через OG, OA иOB: OG-OA=k(OB-OG). Решая это уравнение относительно OG , получим:
Теорема о пересечении медиан треугольника в одной точке.
Здесь мы попутно получим одно векторное равенство, которое понадобится нам в дальнейшем.
Теорема 1.Медианы треугольника АВС пересекаются в одной точкеGи делятся ею в отношении 2:1, считая от вершины, причем
гдеP – любая точка плоскости или пространства.
Доказательство. Возьмем на медиане CD треугольника ABC точку G, определяемую соотношением |CG|:|GD|=2:1 (рис. 3).
Вычисляя вектор PG’ с концом в точкеG’, делящей любую из двух других медиан треугольника в отношении 2:1 (считая от вершины), мы получим то же самое выражение:
Поэтому PG’=PG, и точка G’ совпадает с точкой G. Следовательно, все три медианы треугольника пересекаются в одной точке G, определяемой соотношением (2).
Теорема о высотах произвольного треугольника.
Теорема 2.Высоты треугольника АВС пересекаются в одной точке Н, причем
где О – центр окружности описанной около треугольника.