Определение в классической геометрии (например, формулировка Биркгофа, но я полагаю, что это могло быть все они) состоит в том, что линия всегда считается параллельной самой себе. Я понимаю, что это, вероятно, для удобства, но, на мой взгляд, поскольку две отдельные строки параллельны, если у них нет общих точек, а линия имеет бесконечно много общих точек с самим собой. Возможно, идея состоит в том, чтобы облегчить определение того, что две (непараллельные) линии пересекаются в одной и только одной точке?
Q: What’s the purpose/what inconvenience would be caused if we didn’t have that definition?
Идея состоит в том, что вы хотите «параллельно» определять классы эквивалентности (называемые «карандаши», см. Coxeter, Проективная геометрия и Artin, Геометрическая алгебра )), которые требуют определяющее отношение как отношение эквивалентности: рефлексивное, симметричное и транзитивное. Тогда у этих классов есть несколько отличных применений, таких как определение проективного пространства, добавляя бесконечную точку для каждого пучка (который считается рассматриваемым на каждой из этих строк) и бесконечную линию для каждого класса параллельных плоскостей (эта строка, содержащая все точки на бесконечности, соответствующие пучкам линий в этом классе плоскостей).
Кроме того, вам уже предстояло переосмыслить определение «параллельное» как не имеющее общих точек, если вы собираетесь делать сплошную геометрию. Параллельные линии также должны быть копланарными . т. Е. Должны быть две другие линии, которые пересекаются друг с другом и каждая из них пересекает параллельные линии (пять различных точек пересечения). Линии, которые не являются копланарными, называются «перекосами», а не «параллельными».
Если две линии параллельны третьей строке, они должны быть параллельны друг другу, даже если они являются одной и той же строкой.
- Прямая линия в начертательной геометрии с примерами
- Общее положение прямой
- Частные случаи положения прямой
- Определение истинной длины отрезка прямой
- Следы прямой линии
- Взаимное положение прямых линий
- Проекции отрезка прямой линии
- Задание и изображение на чертеже прямой общего положения
- Прямые уровня
- Проецирующие прямые
- Следы прямой линии
- Определение натуральной величины отрезка и углов его наклона к плоскостям проекций
- Деление отрезка прямой линии
- Взаимное расположение двух прямых
- Взаимное расположение точки и прямой
- Взаимно перпендикулярные прямые
- Проецирование отрезка прямой
- Положение прямой относительно плоскостей проекций
- Прямые уровня
- Проецирующие прямые
- Точка на прямой
- Следы прямой
- Взаимное положение прямых
- Проецирование прямого угла
- Что такое прямая линия
- Способы задания прямой
- Классификация прямых
- Прямые общего положения
- Прямые частного положения
- Линии уровня
- Проецирующие прямые
- Взаимное положение прямых линий
- Принадлежность точки прямой линии
- Определение натуральной величины отрезка. Способ треугольника
- Проекции прямой. Положение прямой относительно плоскостей проекций
- Понятие о следах прямой
- Взаимное положение двух прямых
- Скрещивающиеся прямые
- Задание прямой
- Прямая общего положения
- Прямые частного положения
- Принадлежность точки прямой. Деление отрезка прямой линии в данном отношении
- Определение длины отрезка прямой общего положения и углов наклона прямой к плоскостям проекций
- Следы прямой линии
- Взаимное положение прямых
- Проекции плоских углов
- Прямая линия. Параллельные прямые. Основные понятия.
- 🎦 Видео
Видео:6 .7 кл Построение параллельных прямых.Как построить параллельные прямыеСкачать

Прямая линия в начертательной геометрии с примерами
Содержание:
Прямая линия проецируется в виде прямой линии. В общем случае прямая линия — безгранична. Положение прямой в пространстве обычно определяется заданием двух точек. Если спроецировать эти точки на плоскость и соединить найденные проекции точек, то полученная проекция отрезка определяет проекцию всей линии, так как отрезок может быть продолжен в любую сторону на требуемое расстояние.
Видео:Параллельные прямые циркулемСкачать

Общее положение прямой
Прямой общего положения называется прямая, пересекающая все плоскоcти координат.
Пусть заданы две точки 
Соединяя соответствующие проекции точек прямыми линиями, получим проекции прямой, заданной отрезком 
Известно, что две проекции прямой определяют её положение в пространстве. Оценив наглядность и измеримость полученного изображения, заметим:
- — что форма проецируемого элемента — прямая линия, так как все проекции его прямые;
- — размеры проекций отрезка не равны истинной длине отрезка, так как он наклонён ко всем плоскостям проекций;
- — положение прямой относительно плоскостей координат может быть установлено по чертежу.
Отметим следующее важное обстоятельство: если точка лежит на прямой, то её проекции расположены на соответствующих проекциях прямой (точка С на Рис.2.1).
Известно, что две прямые, пересекаемые рядом параллельных прямых, рассекаются ими на пропорциональные части. Следовательно, отношение отрезков прямой равно отношению проекций этих отрезков, т.е.
Частные случаи положения прямой
К частным случаям положения прямой относят прямые: параллельные одной из плоскостей координат, перпендикулярные к одной из плоскостей координат, лежащие в плоскости координат, совпадающие с осью координат.
Прямая, параллельная какой — либо плоскости координат, проецируется на эту плоскость в истинную величину. Это очевидно, так как 

Для прямоугольных проекций прямой, параллельной плоскости 



Аналогично, любая прямая 



Прямым, параллельным плоскостям координат, принято давать общее название линий уровня.
Прямая, перпендикулярная к какой-либо плоскости координат (проецирующая прямая), параллельна оси координат, перпендикулярной к этой плоскости. Например, прямая 



В общем случае, если прямая перпендикулярна к плоскости координат, то на эту плоскость она проецируется в виде точки, а на две другие плоскости — в истинную длину и параллельно той оси координат, которой параллельна сама прямая.
Если прямая расположена в плоскости координат, то её проекция на эту плоскость совпадает с самой прямой, а две другие проекции совпадают с осями координат.
Если прямая совпадает с осью координат, то две её проекции совпадают с самой прямой, а на плоскость, перпендикулярную этой оси, прямая спроецируется точкой в начало координат.
Определение истинной длины отрезка прямой
Пусть отрезок прямой 









Рассмотрим пример определения истинной длины отрезка, расположенного в первом октанте. Пусть имеются проекции 
Определим его истинную длину по фронтальной проекции. Для этого в точках 






Соединяя точки 


Аналогичное построение можно выполнить на горизонтальной проекции отрезка. В этом случае 


Построение можно упростить. Если отложить на перпендикуляре, восстановленном из точки 





Отметим, что в способе треугольника одновременно с истинной длиной отрезка определяется угол наклона прямой к соответствующей плоскости координат:
 


Рассмотрим пример определения истинной длины отрезка для случая, когда координаты концевых точек имеют разные знаки. Пусть, например, точка 



Особенностью построения в данном случае является необходимость учёта знаков недостающих координат точек, т.е. значения этих координат откладываются на перпендикулярах, восстановленных к концам проекции отрезка, в произвольные, но разные стороны (см. Рис.2.6, б). В нашем примере 
При построении способом треугольника на перпендикуляре, восстановленном из точки 


Следы прямой линии
Следом прямой линии ни данной плоскости координат называется точка пересечения (встречи) прямой с упомянутой плоскостью.
Точка пересечения прямой с плоскостью 



Изобразим в косоугольных проекциях (Рис.2.7) произвольный отрезок 



Изображение горизонтальной проекции 








Точка 







Построение проекций фронтального 

Местоположение следов прямой 
Рассмотрим построение прямоугольных проекций следов прямой общего положения, заданной проекциями отрезка 
Для этого следует найти сначала фронтальную или профильную проекции этого следа. Фронтальную проекцию 












Горизонтальную проекцию 








Аналогичным построением найдём проекции профильного следа.
В заключение данного раздела отметим следующее:
- — прямая, параллельная одной из плоскостей координат, имеет лишь два следа;
- — прямая, перпендикулярная к плоскости координат, имеет лишь один след;
- — два следа прямой совпадают в одной точке, если прямая пересекает ось координат;
- — три следа прямой совпадают, если прямая проходит через начало координат.
Взаимное положение прямых линий
Возможны три случая относительного положения прямых линий. Прямые могут быть взаимно параллельны, могут пересекаться друг с другом или скрещиваться.
Если прямые параллельны, то их соответствующие проекции тоже параллельны.
Пусть даны косоугольные проекции двух взаимно параллельных прямых 

Чтобы через данную точку провести прямую, параллельную заданной, нужно через проекции этой точки провести прямые, параллельные соответствующим проекциям заданной прямой.
У пересекающихся прямых соответствующие проекции пересекаются и проекции точки пересечения связаны перпендикуляром к соответствующей оси координат. Пусть даны две пересекающиеся в точке 


Точка 


Скрещивающиеся прямые не имеют общей точки. Их проекции могут пересекаться, но точки пересечения не находятся в проекционной связи друг с другом, т. е. не лежат на перпендикуляре к соответствующей оси координат.
Изобразим прямоугольные проекции Рис.2.11) двух скрещивающихся прямых 












Проекции отрезка прямой линии
Как известно из элементарной геометрии, прямая линия определяется двумя точками, поэтому, чтобы построить проекции этой прямой, необходимо иметь проекции двух точек, принадлежащих этой прямой.
Прямую, не параллельную ни одной из плоскостей проекций, называют прямой общего положения.
На рис. 2.1 дано пространственное изображение и чертеж прямой АВ. Точки А и В находятся на разных расстояниях от каждой из плоскостей пространства, т е. прямая АВ не параллельна не одной из них. Значит, прямая АВ общего положения.
Задание и изображение на чертеже прямой общего положения
Прямая линия в пространстве определяется положением двух ее точек, например А и В. Значит, достаточно выполнить комплексный чертеж этих точек, а затем соединить одноименные проекции точек прямыми линиями, получим соответственно горизонтальную и фронтальную проекции прямой.
Прямая общего положения называется прямая не параллельная ни одной из плоскостей проекций. Прямая, параллельная или перпендикулярная одной из плоскостей проекций, называется прямой частного положения.
Рисунок 2.1 — Прямая общего положения
Прямые, параллельные или перпендикулярные к плоскостям проекций, называются прямыми частного положения. Прямая, параллельная какой-либо одной плоскости проекций, называется прямой уровня. Существуют три линии уровня:
- горизонтальная — прямая, параллельная горизонтальной плоскости проекций Н;
- фронтальная — прямая, параллельная фронтальной плоскости проекций V;
- профильная — прямая, параллельная профильной плоскости проекций W.
Прямые уровня
Прямая, параллельная одной из плоскостей проекций, называется прямой уровня.
Название зависит от того, какой плоскости она параллельна.
Различают: горизонтальную прямую уровня (горизонталь) h, фронтальную прямую уровня (фронталь) f, профильную прямую уровня (профиль) р.
Все точки прямых уровня имеют равные или высоты (горизонталь), или глубины (фронталь), или широты (профиль). Поэтому соответствующие проекции прямых параллельны проекциям определенных осей координат.
 
Проецирующие прямые
Прямая, перпендикулярная какой-либо плоскости проекции, называется проецирующей.
Различают: горизонтально проецирующую (АВ), фронтально проецирующую (CD) и профильно проецирующую (EF) (рис. 8).
У проецирующей прямой одна проекция вырождается в точку, а две другие проекции параллельны самой прямой и совпадают с направлением линии связи.
Рисунок 2.3 — Проецирующие прямые; АВ- горизонтально проецирующая CD — фронтально-проецирующая, EF-профильно-проецирующая
Следы прямой линии
Точки пересечения прямой линии с плоскостями проекции называют следами. В системе трех плоскостей проекции прямая общего положения имеет три следа — горизонтальный, профильный и фронтальный и профильный; прямая, параллельная одной из плоскостей проекции — два, и прямая, перпендикулярная к плоскости проекции — один след.
Что бы найти горизонтальный след, надо продлить фронтальную проекцию а»в» (рис. 2.4) до пересечения с осью Х (точка М») и из этой точки восстановить перпендикуляр к оси X (линию связи) до пересечения с продолжением горизонтальной проекции a’b’.
Рисунок 2.4 — Следы прямой линии
Точка м’— горизонтальная проекция горизонтального следа, которая совпадает с самим следом М.
Для нахождения фронтального следа необходимо продолжить горизонтальную проекцию а’ в’ до пересечения с осью X (точка n’) и через точку n’, которая является горизонтальной проекцией фронтального следа, провести перпендикуляр к оси X до пересечения с продолжением фронтальной проекцией а»в». Точка n»— фронтальная проекция фронтального следа, которая совпадает с фронтальным следом N.
Отметим, что прямая не имеет следа на плоскости проекций в том случае, если она параллельна этой плоскости.
Определение натуральной величины отрезка и углов его наклона к плоскостям проекций
Возьмем отрезок АВ (рис. 2.5) и построим его ортогональную проекцию на горизонтальной плоскости проекций Н. В пространстве при этом образуется прямоугольный треугольник A’BB’, в котором одним катетом является горизонтальная проекция этого отрезка, вторым катетом разность высот точек А и В отрезка, а гипотенузой является сам отрезок.
Рисунок 2.5 — Определение натуральной величины отрезка способом прямоугольного треугольника
На чертеже прямоугольный треугольник построен на горизонтальной проекции отрезка АВ, второй катет треугольника 


Аналогичное построение можно сделать на фронтальной проекции отрезка, только в качестве второго катета надо взять разность глубин его концов, замеренную на плоскости Н.
Деление отрезка прямой линии
Иногда требуется разделить отрезок в данном отношении. Из свойств параллельного проецирования известно, что отношение отрезков одной и той же прямой равно отношению проекций эти отрезков.
Чтобы разделить отрезок прямой в заданном отношении, необходимо разделить в этом отношении одну из проекций этого отрезка, а затем с помощью линий связи перенести делящую точку на другие проекции.
На рис. 2.6 дан пример деления отрезка прямой линии АВ в отношение 2 : 3.
Рисунок 2.6 — Деление отрезка прямой линии
Из точки А’ проведен вспомогательный отрезок прямой, на котором отложено пять одинаковых частей произвольной длинны. Проведя отрезок В’5 и параллельно ему точку 2 прямую, получим точку С’ причем А’К’ : КБ’ = 2 : 3; затем линии связи находим точку С». Точка С делит отрезок АВ в отношении 2 : 3.
Взаимное расположение двух прямых
- Пересекающиеся прямые. В этом случае прямые а и b имеют одну общую точку, проекции которой А’ и А» расположены на одной линии связи (рис 2.7).
- Параллельные прямые. По свойству параллельного проецирования проекции параллельных прямых на любую плоскость параллельны, т.е. если . 
- Скрещивающиеся прямые. Если две прямые скрещиваются, то их одноименные проекции могут пересекаться в точках, не лежащих на одной линии связи: две точки А и В — горизонтально конкурирующие точки, две точки С и D — фронтально конкурирующие. Как видно из чертежа, точка А расположена над точкой В; следовательно, прямая а проходит над прямой b. Точка С расположена перед (ближе к зрителю) точкой D, следовательно, прямая b проходит в этом месте впереди прямой а.
Правило определения видимости на комплексном чертеже:
из двух горизонтально конкурирующих точек на поле Н видна та точка, которая расположена выше, а из двух фронтально конкурирующих точек на поле V видна та точка, которая расположена ближе (по отношению к наблюдателю).
Рисунок 2.7 — Расположение двух прямых; а — пересекающиеся, б — параллельные, в — скрещивающиеся
Взаимное расположение точки и прямой
Из свойств параллельного проецирования (свойство принадлежности) известно, что если точка лежит на прямой, то ее проекции должны лежать на одноименных проекциях этой прямой.
Поэтому, из четырех точек А, В, С и D, приведенных на чертеже (рис. 2.8), лишь одна точка А лежит на прямой. Точка В находится над прямой, так как она расположена выше, чем горизонтально конкурирующая с ней точка прямой а (фронтальная проекция этой точки прямой а отмечена крестиком). Аналогично, точка С находится перед прямой а, точка D расположена ниже и дальше точки прямой а.
Определение взаимного положения точки и профильной прямой выполняется с помощью построения профильной проекции. На рис. 2.8 точка С расположена над и перед прямой АВ.
Рисунок 2.8 — Расположение точки и прямой
Взаимно перпендикулярные прямые
Для того, чтобы прямой угол проецировался без искажения, необходимо и достаточно, чтобы одна его сторона была параллельна, а другая не перпендикулярна к плоскости проекций.
Пусть сторона АВ прямого угла ABC параллельна плоскости Н. Требуется доказать, что проекция его: угол А’В’С’ равен 90.
Прямая АВ перпендикулярна плоскости, так как АВ перпендикулярна двум прямым этой плоскости ВС и ВВ’, проходящих через точку В. Прямая АВ и ее прекция А’В’ две параллельные прямые, поэтому А’В’ также перпендикулярна плоскости. Следовательно, А’В’ перпендикулярна В’С’.
Две взаимно перпендикулярные прямые (рис. 2.9) (пересекающиеся или скрещивающиеся) тогда сохраняют свою перпендикулярность в горизонтальной проекции, если одна из этих прямых является горизонталью.
Две взаимно перпендикулярные прямые сохраняют свою перпендикулярность во фронтальной проекции, если одна из них является фронталыю.
Рисунок 2.9 — Две взаимно перпендикулярные прямые (проецирование прямого угла)
Видео:Эксперт (Короткометражка, Русский дубляж)Скачать

Проецирование отрезка прямой
Для этого необходимо и достаточно спроецировать две конечные точки отрезка. 
Положение прямой относительно плоскостей проекций
Прямая общего положения — прямая, не параллельная ни одной из плоскостей проекций.
Прямая частного положения — прямая, параллельная или перпендикулярная плоскости проекций.
Положение прямой относительно плоскостей проекций 
Прямая общего положения — прямая, не параллельная ни одной из плоскостей проекций.
Прямая частного положения — прямая, параллельная или перпендикулярная плоскости проекций.
Прямые уровня
Это прямые, параллельные одной из плоскостей проекций, на которую они проецируются в натуральную величину. Они находятся на одном уровне от соответствующей плоскости.
Горизонтальная прямая — прямая, параллельная горизонтальной плоскости проекций 
Профильная и фронтальные проекции // со ответственно осям X и У
 
Фронтальная прямая — прямая, параллельная фронтальной плоскости проекций
Фронтальная прямая — прямая, параллельная фронтальной плоскости проекций 
Профильная прямая — прямая, параллельная профильной плоскости проекций 
 
Проецирующие прямые
Это прямые, перпендикулярные одной из плоскостей проекций, на которую они проецируются в точку. Они совпадают с направлением проецирования.
Проецирующие прямые одновременно параллельны двум другим плоскостям проекций.
Горизонтально-проецирующая прямая — это прямая, перпендикулярная горизонтальной плоскости проекций 
Фронтально-проецирующая прямая — прямая, перпендикулярная фронтальной плоскости проекций 
Профильно-проецирующая прямая — прямая, перпендикулярная профильной плоскости проекций 
Точка на прямой
Если точка принадлежит прямой, то её проекции лежат на одноименных проекциях этой прямой.
Следы прямой
Точка пересечения прямой с плоскостями называется следом прямой.
Чтобы построить горизонтальный след прямой необходимо:
- Продолжить фронтальную проекцию до пересечения с осью X в точке 
- Провести через эту точку линию связи на 
- Продолжить горизонтальную проекцию до пересечения с этой линией связи в точке 
Для построения фронтального следа надо продолжить горизонтальную проекцию 



- М — горизонтальный след прямой 
- N — фронтальный след прямой 
Дан отрезок общего положения. Найти горизонтальный и фронтальный следы.
Взаимное положение прямых
1 .Если в пространстве прямые параллельны, то их одноименные проекции параллельны между собой. ( Если одноименные проекции прямых общего положения параллельны на двух плоскостях проекций, то эти прямые параллельны).
2. Если прямые пересекаются, то их одноименные проекции пересекаются между собой, а точка их пересечения лежит на одной линии связи.
Справедливо и обратное, кроме профильных прямых. 
3. Если прямые не параллельны и не пересекаются, то они называются скрещивающимися. 
Проецирование прямого угла
Прямой угол проецируется прямым, если одна из его сторон параллельна одной из плоскостей проекций, т.е. является фронтальной или горизонтальной прямой. (Прямой угол проецируется прямым па ту плоскость проекции, кото рои параллельна одна из его сторон, т. е. является фронтальной или горизонтальной прямой). 
Определение натуральной величины отрезка прямой общего положения способом прямоугольного треугольника
Натуральная величина отрезка АВ определяется как гипотенуза прямоугольного треугольника, одним из катетов является проекция отрезка, а вторым — разница расстояний концов другой проекции до оси X 
Угол между прямой линией и плоскостью проекций определяется как угол между прямой и её проекцией на эту плоскость.
Видео:Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.Скачать

Что такое прямая линия
Прямая линия в системе плоскостей проекций занимает определенное положение. Прямая может располагаться относительно плоскостей проекций произвольно или занимать некоторое частное положение — быть параллельной, перпендикулярной или принадлежать какой-либо плоскости проекций.
Способы задания прямой
- Двумя точками.
- Точкой и направлением.
- Линией пересечения двух плоскостей.
- Своими проекциями.
Классификация прямых
В зависимости от положения прямых относительно плоскостей проекций различают прямые общего положения и прямые частного положения.
Прямые общего положения
Прямая общего положения — прямая, наклоненная под произвольными углами ко всем трем плоскостям проекций (рис. 4.1, 4.2).
Рис. 4.1. Прямая общего положения: 
a(AB) — прямая общего положения; 
a1(A1B1) — горизонтальная проекция прямой a(AB); 
a2(A2B2) — фронтальная проекция прямой a(AB)
Рис. 4.2. Комплексный чертеж прямой общего положения: 
а — двухкартинный комплексный чертеж; б — безосный комплексный чертеж
Прямые частного положения
Среди прямых частного положения различают линии уровня и проецирующие прямые.
Линии уровня
Прямые линии, параллельные какой-либо плоскости проекций, называются линиями уровня.
Горизонталь h — прямая, параллельная горизонтальной плоскости проекций h || П1 (рис. 4.3).
Рис. 4.3. Горизонталь:
a – наглядное изображение; б – комплексный чертеж
Поскольку высоты всех точек горизонтали равны между собой: h2
Любой отрезок горизонтали проецируется на П1 в натуральную величину: 
[A1B1 ] = [AB ].
Угол наклона h к Π2 также проецируется на П1 в натуральную величину: 
Фронталь 

Рис. 4.4. Фронталь: 
a — наглядное изображение; 
б — комплексный чертеж
Поскольку глубина всех точек фронтали одинакова:

Отрезки фронтали и угол наклона к П1 проецируются на П1 в натуральную величину:[C2D2] =[CD]; Zβ1=Zβ=
Профильная прямая р — прямая, параллельная профильной плоскости проекций p|| П3 (рис. 4.5).
Поскольку широта всех точек профильной прямой одинакова: р2 
Отрезки профильной прямой и углы наклона к П1 и П2 проецируются на П3 в натуральную величину: [E3F3] =[EF];
Проецирующие прямые
Прямая линия, перпендикулярная одной из плоскостей проекций или параллельная направлению проецирования, называется проецирующей.
Горизонтально-проецирующая прямая — прямая, перпендикулярная горизонтальной плоскости проекций a 1 
Рис. 4.6. Горизонтально-проецирующая прямая: 
a — наглядное изображение; 
б — комплексный чертеж
Фронтально-проецирующая прямая — прямая, перпендикулярная фронтальной плоскости проекций b 
Рис. 4.7. Фронтально-проецирующая прямая: 
a — наглядное изображение; 
б — комплексный чертеж
Профильно-проецирующая прямая — прямая, перпендикулярная профильной плоскости проекций c 
Рис. 4.8. Профильно-проецирующая прямая: 
a — наглядное изображение; 
б — комплексный чертеж
Взаимное положение прямых линий
Прямые линии в пространстве могут быть параллельными, пересекающимися или скрещивающимися.
Если прямые параллельны (рис. 4.9), то их одноименные проекции параллельны: a || b 
Рис. 4.9. Параллельные прямые a и b: 
a — наглядное изображение; б — комплексный чертеж
Пересекающиеся прямые имеют общую точку (рис. 4.10), то есть точки пересечения их одноименных проекций лежат на общей линии связи: 
c × d = K 
c 2 × d2 = K2 и K 1 K 2 
Рис. 4.10. Пересекающиеся прямые c иd: 
a — наглядное изображение; б — комплексный чертеж
Прямые, не имеющие общей точки и не параллельные между собой, являются скрещивающимися (рис. 4.11, 4.12).
Рис. 4.11. Скрещивающиеся прямые m и n
Рис. 4.12. Проекции скрещивающихся прямых: 
a — скрещивающиеся прямые m иn; 
б — скрещивающиеся прямые l u j
Если пересекающиеся и параллельные прямые лежат в одной плоскости, то скрещивающиеся прямые лежат в двух параллельных плоскостях.
Принадлежность точки прямой линии
Точка принадлежит прямой, если ее проекции принадлежат соответствующим (одноименным) проекциям прямой (рис. 4.13).
Рис. 4.13. Принадлежность точки прямой линии: 
K ∈ a 
[K1K2 ]
Определение натуральной величины отрезка. Способ треугольника
Отрезок [AB] — отрезок прямой общего положения. Ни одна из проекций отрезка не равна его натуральной величине.
На рис. 4.14 A1ABB1 — прямоугольная трапеция, наклонной стороной которой является отрезок [AB], высотой — его горизонтальная проекция [A1B1], основаниями — горизонтально-проецирующие прямые (AA1) и (BB1).
Если провести прямую (AB 0 ) || (A1B1), то от трапеции A1ABB1 отсекается прямоугольный треугольник ABB 0 с гипотенузой [AB], один катет которого [AB 0 ] = [A1B1 ], другой — [BB 0 ] равен разности высот точек A и B. 
Рис. 4.14. Определение натуральной величины отрезка способом треугольника
На комплексном чертеже (рис. 4.15,а) прямоугольный треугольник строится непосредственно при горизонтальной проекции отрезка: ΔA1B1B’ = ΔABB 0 . Одним катетом прямоугольного треугольника является горизонтальная проекция [A1B1 ], вторым — разность высот точек A и B (отрезок [BB 0 ] = [B1B’]), гипотенуза [ A1B’] и будет равна натуральной величине отрезка [AB ].
Рис. 4.15. Определение натуральной величины отрезка: 
а — на горизонтальной проекции; 
б — на фронтальной проекции
Аналогичные построения возможны и на фронтальной проекции (рис. 4.15,б), тогда одним катетом прямоугольного треугольника является фронтальная проекция[A2B2], а вторым — разность глубин точек A и B (отрезок [A2A’]=[A1A0]), гипотенуза [ B2A’]будет равна натуральной величине отрезка [AB ].
Таким образом, можно сформулировать общее правило:
Натуральная величина отрезка прямой определяется гипотенузой прямоугольного треугольника, одним катетом которого является одна из проекций отрезка, а вторым — разность расстояний концов другой проекции отрезка относительно друг друга.
Видео:Прямая параллельная плоскостиСкачать

Проекции прямой. Положение прямой относительно плоскостей проекций
Относительно плоскостей проекций H, V и W прямые линии могут занимать различные положения и имеют соответствующие наименования, а на чертежах проекции этих прямых занимают относительно осей проекций x, y и z характерные положения. Следовательно, по чертежу прямой линии можно мысленно представить ее пространственное положение относительно плоскостей проекций, т. е. научиться «читать» чертеж прямой.
Прямые общего положения – не параллельны (и соответственно не перпендикулярны) плоскостям проекций H, V и W. Следовательно, на чертеже проекции прямых общего положения не параллельны (и не перпендикулярны) осям проекций x, y и z. Отсюда проекции прямых общего положения искажают их натуральную величину.
На рис. 2.1 изображены проекции прямой общего положения АВ, фронтальная A»B» и горизонтальная A’B’ проекции которой расположены произвольно относительно оси проекций x, но не параллельны и не перпендикулярны оси x – это характерный признак прямой общего положения на чертеже! Профильная проекция A»‘B»‘ прямой общего положения также должна быть не параллельна и не перпендикулярна осям проекций z и y, что и показывает построение.
Точка на прямой. Теорема о принадлежности точки прямой: если точка принадлежит прямой, то на чертеже одноименные проекции точки лежат на одноименных проекциях прямой.
На рис. 1.4 показано построение проекций точки С, принадлежащей прямой АВ.
Прямые особого (частного) положения
Прямые уровня – прямые, параллельные одной плоскости проекций:
- – фронтальные прямые – параллельные плоскости проекций V;
- – горизонтальные прямые – параллельные плоскости проекций H;
- – профильные прямые – параллельные плоскости проекций W.
На рис. 2.2 изображены проекции фронтальной прямой АВ и принадлежащей ей точки С. Запомните характерные признаки расположения проекций фронтальной прямой на чертеже:
- – горизонтальная проекция A’B’ параллельна оси проекций x;
- – фронтальная проекция A»B» расположена к оси проекций x под углом φH, который определяет ее наклон к плоскости проекций H; фронтальная проекция A»B» определяет также натуральную величину этой прямой;
- – профильная проекция A»‘B»‘ по построению располагается параллельно оси проекций z.
На рис. 2.3 изображены проекции горизонтальной прямой CD и принадлежащей ей точки Е. Запомните характерные признаки расположения проекций горизонтальной прямой на чертеже:
- – фронтальная проекция C»D» параллельна оси проекций x;
- – горизонтальная проекция C’D’ расположена к оси проекций x под углом φV, который определяет ее наклон к плоскости проекций V; горизонтальная проекция C’D’ определяет также натуральную величину этой прямой;
- – профильная проекция C»‘D»‘ по построению располагается горизонтально (//y).
На рис. 2.4 изображены проекции профильной прямой EF и принадлежащей ей точки N. Запомните характерные признаки расположения проекций профильной прямой на чертеже:
- – фронтальная проекция E»F» перпендикулярна оси проекций x (параллельна оси проекций z);
- – горизонтальная проекция E’F’ перпендикулярна оси проекций x;
- – профильная проекция E»‘F»‘ по построению расположена под углом φV к плоскости проекций V и под углом φH к плоскости проекций H; профильная проекция E'»F'» определяет также натуральную величину этой прямой.
Деление отрезка в заданном отношении
На рис. 2.4 показано построение горизонтальной проекции N’ точки N, принадлежащей профильной прямой EF. Построение основано на одном из свойств параллельного проецирования: отношение отрезков прямой линии равно отношению их проекций.
Пусть точка N делит отрезок EF в каком-то отношении. Следовательно, проекции отрезка делятся в том же отношении. Если, например, дана фронтальная проекция N» точки N, принадлежащей отрезку EF, то для построения горизонтальной проекции N’ на горизонтальной проекции E’F’ отрезка нужно выполнить следующие графические действия:
- – провести произвольную прямую m из любой вершины горизонтальной проекции E’F’;
- – отложить на этой прямой два отрезка: отрезок E’Fo, равный по величине фронтальной проекции E»F», и отрезок E’No, равный по величине E»N»;
- – соединить прямой точки Fo и F’ на горизонтальной проекции;
- – из построенной точки No провести прямую, параллельную прямой FoF’, – точка N’ и будет искомой.
Прямые проецирующие – перпендикулярные одной плоскости проекций (параллельные двум плоскостям проекций):
- – фронтально-проецирующие прямые – перпендикулярные плоскости проекций V (параллельные плоскостям проекций H и W);
- – горизонтально-проецирующие – перпендикулярные плоскости проекций H (параллельные плоскостям проекций V и W);
- – профильно-проецирующие прямые – перпендикулярные плоскости проекций W (параллельные плоскостям проекций H и V).
. Поскольку положение проецирующих прямых совпадает по направлению с проецирующим лучом к одной из плоскостей проекций, то одна из проекций прямых проецируется (вырождается) в точку. Говорят, что проецирующие прямые обладают «собирательным» свойством, так как их вырожденные проекции-точки «собирают», то есть представляют собой проекции всех точек, лежащих на этих прямых.
На рис. 2.5 изображены проекции фронтально-проецирующей прямой CD и принадлежащей ей точки N. Запомните характерные признаки расположения проекций фронтально-проецирующей прямой на чертеже:
- – фронтальная проекция CD(C»D») представляет собой точку, т. е. фронтальные проекции точек C, D и N совпадают как лежащие на одном проецирующем луче к плоскости проекций V;
- – горизонтальная проекция C’D’ расположена перпендикулярно оси проекций x и определяет натуральную величину прямой;
- – профильная проекция C»‘D»‘ по построению располагается перпендикулярно оси проекций z и также определяет натуральную величину прямой.
. Конкурирующие точки – точки, лежащие на одном проецирующем луче, называются конкурирующими.
На рис. 2.5 точки C, D и N на прямой CD являются конкурирующими и по их расположению на прямой относительно плоскости V (по координатам y) можно определить на горизонтальной проекции порядок их «видимости»: ближе к наблюдателю и дальше от плоскости V (с наибольшей координатой y) находится точка D, затем точка N и точка C.
На рис. 2.6 изображены проекции горизонтально-проецирующей прямой AB и принадлежащей ей точки C. Запомните характерные признаки расположения проекций горизонтально-проецирующей прямой на чертеже:
– горизонтальная проекция AB(A’B’) представляет собой точку, т. е. горизонтальные проекции точек A, B и C совпадают как лежащие на одном проецирующем луче к плоскости проекций H;
– фронтальная проекция A»B» расположена перпендикулярно оси x и определяет натуральную величину прямой;
– профильная проекция A»‘B»‘ по построению располагается параллельно оси z и также определяет натуральную величину прямой.
На рис. 2.7 изображены проекции профильно-проецирующей прямой EF и принадлежащей ей точки M. Запомните характерные признаки расположения проекций профильно-проецирующей прямой на чертеже:
- – профильная проекция EF(E»‘F»‘) представляет собой точку, т. е. профильные проекции точек E, F и M совпадают как лежащие на одном проецирующем луче к плоскости проекций W;
- – фронтальная проекция E»F» расположена параллельно оси x и определяет натуральную величину прямой;
- – горизонтальная проекция E’F’ по построению также располагается параллельно оси x и также определяет натуральную величину прямой.
Определение по чертежу натуральной величины отрезка прямой общего положения способом прямоугольного треугольника и углов ее наклона к плоскостям проекций H и V.
Натуральной величиной заданного на чертеже отрезка прямой общего положения является гипотенуза построенного прямоугольного треугольника, одним катетом которого может быть горизонтальная (или фронтальная) проекция отрезка, а вторым катетом этого треугольника будет разница координат ∆z (или ∆y) конечных точек этого отрезка относительно оси проекций x.
На рис. 2.8 показано построение натуральной величины заданного отрезка AB способом прямоугольного треугольника относительно фронтальной и горизонтальной его проекций, для чего выполнен следующий графический алгоритм (графические действия):
- 1-е действие. Провести перпендикулярную линию m к фронтальной проекции AB(A»B») отрезка.
- 2-е действие. На этой прямой линии отложить отрезок A»Ao, равный разнице координат ∆y конечных точек А(А’) и В(B’) отрезка относительно оси проекций x.
- 3-е действие. Достроить гипотенузу AоB» треугольника, которая определяет искомую натуральную величину отрезка АВ.
Аналогичные построения выполнены относительно горизонтальной проекции отрезка A’B’ – гипотенуза А’Bо также определяет натуральную величину заданного отрезка.
В построенных прямоугольных треугольниках углы между проекциями отрезка и гипотенузой определяют углы наклона прямой к плоскостям проекций H и V:
- – угол φV между фронтальной проекцией A»B» отрезка и гипотенузой AoB» определяет наклон отрезка к плоскости проекций V;
- – угол φH между горизонтальной проекцией A’B’ отрезка и гипотенузой A’Bо определяет наклон отрезка к плоскости проекций H.
. В задачах по начертательной геометрии часто требуется построить на прямой общего положения, не имеющей второй конечной точки, проекции отрезка какой-либо заданной величины.
На рис. 2.9 показано построение на прямой n с одной конечной точкой A проекций отрезка AB заданной величины 25 мм, для чего выполнен следующий графический алгоритм (графические действия):
- 1-е действие. Ограничить прямую n произвольным отрезком АК(А’K’, A»K»).
- 2-е действие. Построить натуральную величину произвольного отрезка АК способом прямоугольного треугольника относительно, например, фронтальной проекции A»K» – это гипотенуза – A»Kо (см. рис. 2.9).
- 3-е действие. На построенной натуральной величине A»Ko (гипотенузе) от точки A» отложить отрезок равный 25 мм и построить точку Bо.
- 4-е действие. Из построенной точки Bо провести перпендикуляр на проекцию n» заданной прямой n и получить точку B», т. е. построить фронтальную проекцию А»В» отрезка АВ заданной величины 25 мм; по линии связи определить горизонтальную проекцию B’ точки B, т. е. построить горизонтальную проекцию А’В’ отрезка АВ заданной величины 25 мм.
Понятие о следах прямой
Следами прямой называются точки ее пересечения с плоскостями проекций.
На рис. 2.10 показано построение на чертеже фронтального и горизонтального следов прямой АВ и определено прохождение прямой по октантам пространства: из IV через I во II.
Взаимное положение двух прямых
Две прямые в пространстве могут быть параллельными, пересекаться или скрещиваться. Запомните характерные признаки расположения на чертеже проекций двух различно расположенных прямых.
Параллельные прямые. Если прямые в пространстве параллельны, то их одноименные проекции на чертеже также параллельны.
На рис. 2.11 изображены параллельные прямые AB и CD. На чертеже фронтальные и горизонтальные проекции прямых параллельны: A»B»//C»D» и A’B’//C’D’.
Пересекающиеся прямые. Если прямые в пространстве пересекаются, то на чертеже проекции точки пересечения прямых лежат на одной линии связи.
На рис. 2.12 изображены проекции пересекающихся прямых EF и KN. Проекции точки их пересечения M(M»,M’) лежат на пересечении одноименных проекций прямых и на одной линии связи.
Скрещивающиеся прямые
Если две прямые не параллельны и не пересекаются, то они в пространстве скрещиваются. На чертеже их проекции могут накладываться, образуя конкурирующие точки, лежащие на одном проецирующем луче.
На рис. 2.13 изображены проекции двух скрещивающихся прямых АВ и CD. Их одноименные проекции накладываются и образуют четыре конкурирующие точки (2 пары):
- – конкурирующие точки 1 и 2 лежат на одном проецирующем луче, перпендикулярном плоскости проекций H, но принадлежат разным прямым: точка 1 принадлежит прямой AB, а точка 2 – прямой CD; горизонтальные проекции точек 1 и 2 совпадают;
- – конкурирующие точки 3 и 4 лежат на проецирующем луче, перпендикулярном плоскости проекций V, но принадлежат разным прямым: точка 3 принадлежит прямой CD, а точка 4 – прямой AB; фронтальные проекции точек 3 и 4 совпадают.
. Конкурирующие точки, как было сказано выше, позволяют наблюдателю определить по чертежу относительное расположение прямых по их удаленности от плоскостей проекций H и V:
- – по конкурирующим точкам 1 и 2 при взгляде на них сверху вниз на плоскость H (по стрелке) видно, что точка 1 расположена выше точки 2 (координата z1 больше координаты z2), т. е. на горизонтальной проекции прямая АВ расположена над прямой CD;
- – по конкурирующим точкам 3 и 4 при взгляде на них снизу вверх на плоскость V (по стрелке) видно, что точка 3 расположена ближе к наблюдателю (координата y3 больше координаты y4), т. е. на фронтальной проекции прямая CD расположена перед прямой АВ.
Теорема о проекции прямого угла. Частное положение прямых – перпендикулярные прямые
Пересекающиеся прямые в пространстве могут быть расположены под прямым углом, т. е. взаимно перпендикулярно. Прямой угол между перпендикулярными прямыми может проецироваться на чертеж в натуральную величину при определенном условии.
Теорема о проекции прямого угла:
- – если одна сторона прямого угла параллельна какой-либо плоскости проекций, а вторая сторона ей не перпендикулярна, то на эту плоскость проекций угол проецируется в натуральную величину, т. е. прямым (90°).
На рис. 2.14 дано изображение, поясняющее теорему о проекции прямого угла. Две перпендикулярные прямые AB и AC, образующие плоскость β, проецируются на некоторую плоскость проекций H. Прямая AС по условию параллельна этой плоскости проекций. Доказательство теоремы основано на известной из геометрии теореме о трех перпендикулярах (обратная теорема): прямая n, проведенная в плоскости H перпендикулярно наклонной прямой АВ (n
. Для решения многих задач начертательной геометрии требуется по условию строить проекции прямого угла.
На рис. 2.15, а, б показано построение на чертеже недостающей фронтальной проекции прямого угла KMN.
На рис. 2.15, а изображено графическое условие задачи: дана горизонтальная проекция K’M’N’ прямого угла и фронтальная проекции M»N» одной стороны этого угла.
На рис. 2.15, б показано решение задачи: так как одна сторона MN прямого угла по условию является фронтальной прямой, т. е. параллельна фронтальной плоскости проекций V, то по теореме о проекции прямого угла на плоскость V заданный прямой угол KMN должен проецироваться прямым; следовательно, фронтальную проекцию K»M» стороны KM прямого угла проводим перпендикулярно заданной фронтальной проекции стороны MN(M»N»).
На рис. 2.16, а, б показано построение на чертеже недостающей горизонтальной проекции прямого угла ECD.
На рис. 2.16, а изображено графическое условие задачи: дана фронтальная проекция E»C»D» прямого угла и горизонтальная проекция C’D’ одной стороны этого угла.
На рис. 2.16, б показано решение задачи: так как одна сторона CD прямого угла по условию является горизонтальной прямой, т. е. параллельна горизонтальной плоскости проекций H, то по теореме о проекции прямого угла на плоскость H заданный прямой угол ECD должен проецироваться прямым; следовательно, горизонтальную проекцию E’C’ стороны угла EC проводим перпендикулярно заданной горизонтальной проекции стороны CD(C’D’).
Структуризация материала второй лекции в рассмотренном объеме схематически представлена на рис. 2.17 (лист 1). На последующих листах 2–4 компактно приведены иллюстрации к этой схеме, способствующие закреплению изученного материала и его быстрому визуальному повторению (рис. 2.18–2.20).
Проекции прямой. Положение прямой относительно плоскостей проекций. Взаимное положение прямых. Способ прямоугольного треугольника. Теорема о проекции прямого угла
Прямые обозначают на чертеже строчными буквами латинского алфавита: а, в, m, n и т.д. Отрезки прямых обозначаются прописными буквами: АВ, MN и т.д.
- Знак пареллельности прямых: АВ // MN.
- Знак пересечения прямых: АВ ∩ MN.
- Знак скрещивающихся прямых: АВ MN. 
Прямая общего положения
Прямая общего положения и её проекции
Деление отрезка в заданном отношении (например, 1:3)
Теорема о принадлежности точки прямой: если точка принадлежит прямой, то на чертеже одноимённые проекции точки лежат на одноимённых проекциях прямой (см. рис. 2.1а, б; 2.4б).
Определение натуральной величины отрезка способом прямоугольного треугольника на чертеже
Прямые частного положения
Горизонтальная прямая уровня: //H
Фронтальная прямая уровня: //V
Профильная прямая уровня: //W
Горизонтально-проецирующая прямая: 
Фронтально-проецирующая прямая: 
Профильно-проецирующая прямая: 
Взаимное расположение прямых
Теорема о проекции прямого угла
Теорема о проекции прямого угла: если одна сторона прямого угла пареллельна плоскости проекций (а вторая не параллельна и не перпендикулярна этой плоскости), то на эту плоскость проекций прямой угол проецируется в виде прямого угла.
Знак перпендикулярности элементов: 
Видео:Параллельность прямой к плоскостиСкачать

Задание прямой
Положение прямой линии в пространстве определяется двумя точками или точкой и направлением. Поэтому на эпюре прямую можно задать проекциями ее отрезка (рис. 2.1), проекциями некоторой произвольной части прямой, не указывая концевых точек этой части (рис. 2.2), или указывая одну точку этой прямой (рис. 2.3). 
Прямая общего положения
Прямая общего положения не параллельна и не перпендикулярна ни одной из плоскостей проекций.
На эпюре проекции прямой общего положения составляют с осями проекций произвольные углы, поэтому величина каждой проекции меньше истинной величины самой прямой (см. рис. 2.1).
Прямые частного положения
Прямые, параллельные или перпендикулярные плоскостям проекций, называют прямыми частного положения.
Прямая, параллельная какой-либо плоскости проекций, а с двумя другими плоскостями образующая произвольные углы, называется прямой уровня. Различают три линии уровня:
- прямую, параллельную горизонтальной плоскости проекций; называют горизонтальной или горизонталью 
- прямую, параллельную фронтальной плоскости проекций; называют фронтальной или фронталью 
- прямую, параллельную профильной плоскости проекций; называют профильной 
Каждая линия уровня будет проецироваться в натуральную величину на ту плоскость проекций, которой она параллельна, углы наклона 
На рис. 2.4 видно, что все точки горизонтальной прямой 



Эти отличительные особенности характерны и для фронтальной и профильной прямых.
Прямые уровня могут принадлежать плоскостям проекций. Такие прямые называют нулевой горизонталью и нулевой фронталью (рис. 2.7).
Прямые, перпендикулярные одной из плоскостей проекций, а двум другим параллельные, называются проецирующими:
- горизонтально-проецирующая — прямая, перпендикулярная горизонтальной плоскости проекций (рис. 2.8);
- фронтально-проецирующая — прямая, перпендикулярная фронтальной плоскости проекций (рис. 2.9);
- профильно-проецирующая — прямая, перпендикулярная профильной плоскости проекций (рис. 2.10).
На рис. 2.8 — 2.10 видно, что проекции прямых, перпендикулярных плоскостям проекций, на этих плоскостях представляют собой точки, а на тех плоскостях, которым прямые параллельны, проекции прямых будут перпендикулярны осям и равны по величине самим прямым.
Принадлежность точки прямой. Деление отрезка прямой линии в данном отношении
Если точка лежит на прямой, то ее проекции будут лежать на одноименных проекциях этой прямой.
На рис. 2.11 изображена прямая и три точки: 



На рис. 2.12 показано построение точки 



Чтобы разделить отрезок прямой в данном отношении, достаточно разделить в этом отношении одну из проекции заданного отрезка, а потом с помощью линии связи перенести делящую точку на другие проекции отрезка.
На рис. 2.13 точка 



Если необходимо разделить отрезок профильной прямой 









Определение длины отрезка прямой общего положения и углов наклона прямой к плоскостям проекций
Для определения натуральной величины отрезка прямой общего положения необходимо построить на чертеже прямоугольный треугольник, одним катетом которого является проекция отрезка на какую-либо плоскость проекций, а величина другого катета равна разности расстояний концов отрезка от плоскости проекций, на которой взяли первый катет. Натуральная величина отрезка прямой будет равна гипотенузе этого треугольника. Угол между катетом-проекцией и гипотенузой равен углу наклона отрезка к этой плоскости проекций.
На рис. 2.15 показано проецирование отрезка 












Для определения угла наклона отрезка прямой 










Угол 


Следы прямой линии
Прямая общего положения пересекает все плоскости проекций. Точки пересечения прямой линии с плоскостями проекций называют следами прямой. Точка 








Для построения горизонтального следа 

Для построения фронтального следа прямой продолжаем горизонтальную проекцию прямой до пересечения с осью 
Так как следы прямых — точки, в которых прямая переходит из одной четверти в другую, то они позволяют определить видимость этой прямой. Та часть прямой, которая расположена в пределах первого октанта, будет видимой. Проекции видимой части прямой изображаются сплошными линиями, а невидимой — штриховыми.
На рис. 2.20 показано построение следов прямой 
Построение горизонтального и фронтального следов выполняют по правилам, указанным выше, профильный след 













Взаимное положение прямых
Прямые в пространстве могут занимать различное взаимное положение. Они могут быть параллельными, пересекающимися и скрещивающимися.
Если прямые в пространстве пересекаются, то на эпюре их одноименные проекции пересекаются, и точки пересечения проекций этих прямых лежат на одной линии связи (рис. 2.22). 
Если прямые в пространстве параллельны, то на эпюре их одноименные проекции параллельны. На рис. 2.23 изображены прямые общего положения 

Если прямые в пространстве не пересекаются и не параллельны между собой, то такие прямые называются скрещивающимися. На эпюре точки пересечения одноименных проекций скрещивающихся прямых не лежат на одной линии связи. Эти точки не являются общими для прямых (рис. 2.25). Точка пересечения одноименных проекций скрещивающихся прямых является на эпюре проекцией двух конкурирующих точек, принадлежащих заданным прямым.
Конкурирующие точки — это точки, лежащие на одном перпендикуляре к плоскости проекций. На эпюре (см. рис. 2.25) горизонтальные проекции конкурирующих точек 

Из чертежа видно, что расстояния от плоскости 



Точке пересечения фронтальных проекций соответствуют точки 3 и 4, расположенные на прямых 

Проекции плоских углов
Плоский угол проецируется на плоскость проекций в натуральную величину, если его стороны параллельны этой плоскости проекций.
Для того чтобы прямой угол проецировался на плоскость в натуральную величину, необходимо и достаточно, чтобы одна из его сторон была параллельна, а другая не перпендикулярна плоскости проекций. Изображенный на рис. 2.26 угол 


| Рекомендую подробно изучить предметы: | 
| 
 | 
| Ещё лекции с примерами решения и объяснением: | 
- Плоскость
- Поверхности
- Изображения и обозначения на чертежах
- Отображение пространственных объектов на плоскость
- Метод проекций
- Методы проецирования
- Образование проекций
- Точка и прямая
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Видео:Новая рассылка от PMLP. «Почувствуй себя недочеловеком»Скачать

Прямая линия. Параллельные прямые. Основные понятия.
Две прямые называются параллельными, если, находясь в одной плоскости, они не пересекаются, сколько бы их ни продолжали. Параллельность прямых на письме обозначают так: AB || СE
Возможность существования таких прямых доказывается теоремой.
Теорема.
Через всякую точку, взятую вне данной прямой, можно провести параллельную этой прямой.
Пусть AB данная прямая и С какая-нибудь точка, взятая вне ее. Требуется доказать, что через С можно провести прямую, параллельную AB. Опустим на AB из точки С перпендикуляр СD и затем проведем СE ^ СD, что возможно. Прямая CE параллельна AB.
Для доказательства допустим противное, т.е., что CE пересекается с AB в некоторой точке M. Тогда из точки M к прямой СD мы имели бы два различных перпендикуляра MD и MС, что невозможно. Значит, CE не может пересечься с AB, т.е. СE параллельна AB.
Следствие.
Аксиома параллельных линий.
Через одну и ту же точку нельзя провести двух различных прямых, параллельных одной и той же прямой.
Так, если прямая СD, проведенная через точку С параллельна прямой AB, то всякая другая прямая СE, проведенная через ту же точку С, не может быть параллельна AB, т.е. она при продолжении пересечется с AB.
Доказательство этой не вполне очевидной истины оказывается невозможным. Ее принимают без доказательства, как необходимое допущение (postulatum).
Следствия.
1. Если прямая (СE) пересекается с одной из параллельных (СВ), то она пересекается и с другой (AB), потому что в противном случае через одну и ту же точку С проходили бы две различные прямые, параллельные AB, что невозможно.
2. Если каждая из двух прямых (A и B) параллельны одной и той же третьей прямой (С), то они параллельны между собой.
Действительно, если предположить, что A и B пересекаются в некоторой точке M, то тогда через эту точку проходили бы две различные прямые, параллельные С, что невозможно.
Теорема.
Если прямая перпендикулярна к одной из параллельных прямых, то она перпендикулярна и к другой параллельной.
Перпендикуляр EF, пересекаясь с AB, непременно пересечет и СD. Пусть точка пересечения будет H.
Предположим теперь, что СD не перпендикулярна к EH. Тогда какая-нибудь другая прямая, например HK, будет перпендикулярна к EH и, следовательно через одну и ту же точку H будут проходить две прямые параллельные AB: одна СD, по условию, а другая HK по доказанному раньше. Так как это невозможно, то нельзя допустить, что СВ была не перпендикулярна к EH.
🎦 Видео
Математика это не ИсламСкачать

Площадь Сечения: Разбираемся в Тайнах ГеометрииСкачать

Лекция 1. Классификация прямых линий.Скачать

Вот почему не нужно огорчаться в жизни/Наше ПОВЕДЕНИЕ = наше ПОДСОЗНАНИЕ Татьяна Черниговская ❤️ 🧠Скачать

7 красных линий. Серия 1. Решение задачиСкачать

ЧТО НАДО ГОВОРИТЬ ЕСЛИ НЕ СДЕЛАЛ ДОМАШКУ!Скачать

Как нарисовать прямую линию?Скачать

4K Как начертить параллельные прямые при помощи циркуля, how to draw parallel linesСкачать

Путешественник во Времени Из 2030 Года Говорит Правду — Доказано Детектором ЛжиСкачать

У Кремля снесло строительные леса , обрушившие зубцы (Скачать

Урок 82. Равнодействующая параллельных сил. Пара силСкачать

когда покупаешь книгу, а там...Скачать

Параллельность прямых. 10 класс.Скачать





























 .
.



















 до пересечения с осью X в точке
до пересечения с осью X в точке 

 до пересечения с этой линией связи в точке
до пересечения с этой линией связи в точке 











































 MN.
MN.













































