Прямая и окружность имеют две точки если расстояние от

Взаимное расположение прямой и окружности

Выясним количество общих точек прямой и окружности в зависимости от их взаимного расположения. Если прямая l проходит через центр O окружности (Рис.1), то она пересекает окружность в двух точках, которые являются концами диаметра окружности.

Пусть прямая не проходит через центр окружности. Проведем перпендикуляр OH к прямой l (Рис.2, Рис.3, Рис.4). Обозначим расстояние от центра окружности до прямой l буквой d. Рассмотрим сколько общих точек будут иметь прямая и окружность в зависимости от соотношения d и r.

Прямая и окружность имеют две точки если расстояние отПрямая и окружность имеют две точки если расстояние от

Теорема 1. Если расстояние от центра окружности до прямой меньше радиуса окружности, то прямая и окружность имеют две общие точки.

В этом случае прямая называется секущей по отношению к окружности.

Доказательство. Пусть расстояние от центра окружности до прямой меньше радиуса окружности: d Теорема 2. Если расстояние от центра окружности до прямой равно радиусу окружности, то прямая и окружность имеют одну общую точку.

Прямая и окружность имеют две точки если расстояние от

Доказательство. Пусть расстояние от центра окружности до прямой равно радиусу окружности: d=r (Рис.3). В этом случае OH=r, т.е. точка H лежит на окружности и является общей точкой прямой l и окружности. Возьмем на прямой l любую точку M отличной от H. Тогда расстояние от OM больше расстояния OH=r, поскольку наклонная OM больше перпендикуляра OH к прямой l. Следовательно точка M не лежит на окружности. Получили, что точка H единственная общая точка прямой l и окружности.Прямая и окружность имеют две точки если расстояние от

Теорема 3. Если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общую точку.

Прямая и окружность имеют две точки если расстояние от

Доказательство. Пусть расстояние от центра окружности до прямой больше радиуса окружности:d>r (Рис.4). Тогда ( small OH > r). Возьмем на прямой l любую точку M отличной от H. Тогда ( small OM > OH>r). Следовательно точка M не лежит на окружности. Таким образом, если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общую точку.Прямая и окружность имеют две точки если расстояние от

Содержание
  1. Прямая и окружность имеют две точки если расстояние
  2. Взаимное расположение прямой и окружности
  3. Окружность и прямая имеют 2 точки если
  4. Взаимное расположение прямой и окружности
  5. Взаимное расположение прямой и окружности
  6. Окружность. Относительное взаимоположение окружностей.
  7. Взаимное расположение прямой и окружности
  8. Тест по геометрии на тему «Окружность» 8 класс
  9. Описание презентации по отдельным слайдам:
  10. Дистанционное обучение как современный формат преподавания
  11. Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
  12. Математика: теория и методика преподавания в образовательной организации
  13. Дистанционные курсы для педагогов
  14. Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
  15. Материал подходит для УМК
  16. Другие материалы
  17. Вам будут интересны эти курсы:
  18. Оставьте свой комментарий
  19. Автор материала
  20. Дистанционные курсы для педагогов
  21. Подарочные сертификаты
  22. 📸 Видео

Видео:Прямая и окружность. Математика. 6 класс.Скачать

Прямая и  окружность. Математика. 6 класс.

Прямая и окружность имеют две точки если расстояние

Видео:№8. Верно ли утверждение: а) если две точки окружности лежат в плоскостиСкачать

№8. Верно ли утверждение: а) если две точки окружности лежат в плоскости

Взаимное расположение прямой и окружности

Выясним количество общих точек прямой и окружности в зависимости от их взаимного расположения. Если прямая l проходит через центр O окружности (Рис.1), то она пересекает окружность в двух точках, которые являются концами диаметра окружности.

Пусть прямая не проходит через центр окружности. Проведем перпендикуляр OH к прямой l (Рис.2, Рис.3, Рис.4). Обозначим расстояние от центра окружности до прямой l буквой d. Рассмотрим сколько общих точек будут иметь прямая и окружность в зависимости от соотношения d и r.

Прямая и окружность имеют две точки если расстояние отПрямая и окружность имеют две точки если расстояние от

Теорема 1. Если расстояние от центра окружности до прямой меньше радиуса окружности, то прямая и окружность имеют две общие точки.

В этом случае прямая называется секущей по отношению к окружности.

Доказательство. Пусть расстояние от центра окружности до прямой меньше радиуса окружности: d Теорема 2. Если расстояние от центра окружности до прямой равно радиусу окружности, то прямая и окружность имеют одну общую точку.

Прямая и окружность имеют две точки если расстояние от

Доказательство. Пусть расстояние от центра окружности до прямой равно радиусу окружности: d=r (Рис.3). В этом случае OH=r, т.е. точка H лежит на окружности и является общей точкой прямой l и окружности. Возьмем на прямой l любую точку M отличной от H. Тогда расстояние от OM больше расстояния OH=r, поскольку наклонная OM больше перпендикуляра OH к прямой l. Следовательно точка M не лежит на окружности. Получили, что точка H единственная общая точка прямой l и окружности.Прямая и окружность имеют две точки если расстояние от

Теорема 3. Если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общую точку.

Прямая и окружность имеют две точки если расстояние от

Доказательство. Пусть расстояние от центра окружности до прямой больше радиуса окружности:d>r (Рис.4). Тогда ( small OH > r). Возьмем на прямой l любую точку M отличной от H. Тогда ( small OM > OH>r). Следовательно точка M не лежит на окружности. Таким образом, если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общую точку.Прямая и окружность имеют две точки если расстояние от

Видео:Окружность и круг, 6 классСкачать

Окружность и круг, 6 класс

Окружность и прямая имеют 2 точки если

Видео:Окружность. 7 класс.Скачать

Окружность. 7 класс.

Взаимное расположение прямой и окружности

Выясним количество общих точек прямой и окружности в зависимости от их взаимного расположения. Если прямая l проходит через центр O окружности (Рис.1), то она пересекает окружность в двух точках, которые являются концами диаметра окружности.

Пусть прямая не проходит через центр окружности. Проведем перпендикуляр OH к прямой l (Рис.2, Рис.3, Рис.4). Обозначим расстояние от центра окружности до прямой l буквой d. Рассмотрим сколько общих точек будут иметь прямая и окружность в зависимости от соотношения d и r.

Прямая и окружность имеют две точки если расстояние отПрямая и окружность имеют две точки если расстояние от

Теорема 1. Если расстояние от центра окружности до прямой меньше радиуса окружности, то прямая и окружность имеют две общие точки.

В этом случае прямая называется секущей по отношению к окружности.

Доказательство. Пусть расстояние от центра окружности до прямой меньше радиуса окружности: d Теорема 2. Если расстояние от центра окружности до прямой равно радиусу окружности, то прямая и окружность имеют одну общую точку.

Прямая и окружность имеют две точки если расстояние от

Доказательство. Пусть расстояние от центра окружности до прямой равно радиусу окружности: d=r (Рис.3). В этом случае OH=r, т.е. точка H лежит на окружности и является общей точкой прямой l и окружности. Возьмем на прямой l любую точку M отличной от H. Тогда расстояние от OM больше расстояния OH=r, поскольку наклонная OM больше перпендикуляра OH к прямой l. Следовательно точка M не лежит на окружности. Получили, что точка H единственная общая точка прямой l и окружности.Прямая и окружность имеют две точки если расстояние от

Теорема 3. Если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общую точку.

Прямая и окружность имеют две точки если расстояние от

Доказательство. Пусть расстояние от центра окружности до прямой больше радиуса окружности:d>r (Рис.4). Тогда ( small OH > r). Возьмем на прямой l любую точку M отличной от H. Тогда ( small OM > OH>r). Следовательно точка M не лежит на окружности. Таким образом, если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общую точку.Прямая и окружность имеют две точки если расстояние от

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Взаимное расположение прямой и окружности

Существует 3 случая взаимного расположения прямой и окружности в зависимости от соотношения между радиусом r окружности и расстоянием d прямой от центра окружности.

1. d r. Если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общих точек.

Прямая, имеющая с окружностью ровно одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности. Прямая, имеющая с окружностью две общие точки, называется секущей.

Теоремы о касательных и секущих

  1. Касательная к окружности перпендикулярна радиусу, проведенному к точке касания.

Прямая и окружность имеют две точки если расстояние от

  1. Если из данной точки проведены к окружности две касательные, то отрезки касательных равны между собой и центр окружности лежит на биссектрисе угла с вершиной в этой точке: (AB=AC) .

Прямая и окружность имеют две точки если расстояние от

  1. Если из данной точки проведены к окружности касательная и секущая, то квадрат длины отрезка касательной равен произведению всего отрезка секущей на его внешнюю часть: (AC^2=CDcdot BC) .

Прямая и окружность имеют две точки если расстояние от

  1. Произведение всего отрезка одной секущей на его внешнюю часть равно произведению всего отрезка другой секущей на его внешнюю часть: (ACcdot BC=ECcdot DC) .

Видео:10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Окружность. Относительное взаимоположение окружностей.

Если две окружности имеют только одну общую точку, то говорят, что они касаются.

Если же две окружности имеют две общие точки, то говорят, что они пересекаются.

Трех общих точек две не сливающиеся окружности иметь не могут, потому, что в противном случае через три точки можно было бы провести две различные окружности, что невозможно.

Будем называть линией центров прямую, проходящую через центры двух окружностей (например, прямую OO1).

Теорема.

Если две окружности имеют общую точку по одну сторону от линии центров, то они имеют общую точку и по другую сторону от этой линии, т.е. такие окружности пересекаются.

Пусть окружности O и O1 имеют общую точку A, лежащую вне линии центров OO1. Требуется доказать, что эти окружности имеют еще общую точку по другую сторону от прямой OO1.

Опустим из A на прямую OO1 перпендикуляр AB и продолжим его на расстояние BA1, равное AB. Докажем теперь, что точка A1 принадлежит обеим окружностям. Из построения видно, что точки O и O1 лежат на перпендикуляре, проведенном к отрезку AA1 через его середину. Из этого следует, что точка O одинаково удалена от A и A1. То же можно сказать и о точке O1. Значит обе окружности, при продолжении их, пройдут через A1.Таким образом, окружности имеют две общие точки : A (по условию) и A1 (по доказанному). Следовательно, они пересекаются.

Следствие.

Общая хорда (AA1) двух пересекающихся окружностей перпендикулярна к линии центров и делится ею пополам.

Теоремы.

1. Если две окружности имеют общую точку на линии их центров или на ее продолжении, то они касаются.

2. Обратно: если две окружности касаются, то общая их точка лежит на линии центров или на ее продолжении.

Признаки различных случаев относительного положения окружностей.

Пусть имеем две окружности с центрами O и O1, радиусами R и R1 и расстоянием между центрами d.

Эти окружности могут находиться в следующих 5-ти относительных положениях:

Прямая и окружность имеют две точки если расстояние от

1. Окружности лежат одна вне другой, не касаясь. В этом случае, очевидно, d > R + R1 .

2. Окружности имеют внешнее касание. Тогда d = R + R1, так как точка касания лежит на линии центров O O1.

3. Окружности пересекаются. Тогда d R + R1, потому что в треугольнике OAO1 сторона OO1 меньше суммы, но больше разности двух других сторон.

4. Окружности имеют внутреннее касание. В этом случае в d = R — R1, потому что точка касания лежит на продолжении линии OO1.

5. Одна окружность лежит внутри другой, не касаясь. Тогда, очевидно,

d R + R1, то окружности расположены одна вне другой, не касаясь.

2. Если d = R + R1, то окружности касаются извне.

3. Если d R — R1, то окружности пересекаются.

4. Если d = R — R1, то окружности касаются изнутри.

5. Если d R Е R1. Значит, все эти случаи исключаются. Остается один возможный, именно тот, который требовалось доказать. Таким образом, перечисленные признаки различных случаев относительно положения двух окружностей не только необходимы, но и достаточны.

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Взаимное расположение прямой и окружности

Существует 3 случая взаимного расположения прямой и окружности в зависимости от соотношения между радиусом r окружности и расстоянием d прямой от центра окружности.

1. d r. Если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общих точек.

Прямая, имеющая с окружностью ровно одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности. Прямая, имеющая с окружностью две общие точки, называется секущей.

Теоремы о касательных и секущих

  1. Касательная к окружности перпендикулярна радиусу, проведенному к точке касания.

Прямая и окружность имеют две точки если расстояние от

  1. Если из данной точки проведены к окружности две касательные, то отрезки касательных равны между собой и центр окружности лежит на биссектрисе угла с вершиной в этой точке: (AB=AC) .

Прямая и окружность имеют две точки если расстояние от

  1. Если из данной точки проведены к окружности касательная и секущая, то квадрат длины отрезка касательной равен произведению всего отрезка секущей на его внешнюю часть: (AC^2=CDcdot BC) .

Прямая и окружность имеют две точки если расстояние от

  1. Произведение всего отрезка одной секущей на его внешнюю часть равно произведению всего отрезка другой секущей на его внешнюю часть: (ACcdot BC=ECcdot DC) .

Видео:Уравнение окружности (1)Скачать

Уравнение окружности (1)

Тест по геометрии на тему «Окружность» 8 класс

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Развитие управляющих функций мозга ребёнка: полезные советы и упражнения для педагогов

Сертификат и скидка на обучение каждому участнику

Прямая и окружность имеют две точки если расстояние от

Описание презентации по отдельным слайдам:

Прямая и окружность имеют две точки если расстояние от

Тест по геометрии 8 класс по теме «Окружность» Подготовил учитель математики и информатики Арешина О. Н. МБОУ «СОШ № 25» г. Новомосковск Тульской области Математика

Прямая и окружность имеют две точки если расстояние от

1.Среди следующих утверждений укажите истинные. Окружность и прямая имеют две общие точки, если а) расстояние от центра окружности до прямой не превосходит радиуса окружности; б) расстояние от центра окружности до прямой меньше радиуса окружности; в) расстояние от центра окружности до прямой меньше радиуса.

Прямая и окружность имеют две точки если расстояние от

2.Закончите фразу, чтобы получилось верное высказывание. Окружность и прямая имеют одну общую точку, если … 3.Вставьте пропущенные слова. Окружность и прямая имеют одну общую точку, если расстояние от … до прямой …

Прямая и окружность имеют две точки если расстояние от

4.Установите истинность или ложность следующих утверждений: а) Прямая а является секущей по отношению к окружности, если она имеет с окружностью общие точки. б) Прямая а является секущей по отношению к окружности, если она пересекает окружность в двух точках. в) Прямая а является секущей по отношению к окружности, если расстояние от центра окружности до данной прямой не больше радиуса.

Прямая и окружность имеют две точки если расстояние от

Ответы: б) расстояние от центра окружности до прямой равно радиусу окружности центра окружности … равно радиусу окружности а) истинно б) истинно в) ложно

Прямая и окружность имеют две точки если расстояние от

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 987 человек из 79 регионов

Прямая и окружность имеют две точки если расстояние от

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 310 человек из 69 регионов

Прямая и окружность имеют две точки если расстояние от

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 677 человек из 75 регионов

Ищем педагогов в команду «Инфоурок»

Видео:Касательная и секущая к окружности encodedСкачать

Касательная и секущая к окружности encoded

Дистанционные курсы для педагогов

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 533 665 материалов в базе

Материал подходит для УМК

Прямая и окружность имеют две точки если расстояние от

«Геометрия», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.

Глава 8. Окружность

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Другие материалы

Прямая и окружность имеют две точки если расстояние от

  • 08.04.2018
  • 353
  • 0

Прямая и окружность имеют две точки если расстояние от

  • 08.04.2018
  • 795
  • 0

Прямая и окружность имеют две точки если расстояние от

  • 08.04.2018
  • 2014
  • 22

Прямая и окружность имеют две точки если расстояние от

  • 07.04.2018
  • 1879
  • 5

Прямая и окружность имеют две точки если расстояние от

  • 07.04.2018
  • 2560
  • 55

Прямая и окружность имеют две точки если расстояние от

  • 07.04.2018
  • 1034
  • 11

Прямая и окружность имеют две точки если расстояние от

  • 01.04.2018
  • 743
  • 0

Прямая и окружность имеют две точки если расстояние от

  • 22.03.2018
  • 1677
  • 3

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 08.04.2018 4085
  • PPTX 1.6 мбайт
  • 17 скачиваний
  • Оцените материал:

Настоящий материал опубликован пользователем Арешина Ольга Николаевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

Прямая и окружность имеют две точки если расстояние от

  • На сайте: 6 лет и 7 месяцев
  • Подписчики: 5
  • Всего просмотров: 13426
  • Всего материалов: 7

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Видео:Пойми Этот Урок Геометрии и получай 5-ки — Касательная и ОкружностьСкачать

Пойми Этот Урок Геометрии и получай 5-ки — Касательная и Окружность

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Прямая и окружность имеют две точки если расстояние от

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Прямая и окружность имеют две точки если расстояние от

Путин поручил обучать педагогов работе с девиантным поведением

Время чтения: 1 минута

Прямая и окружность имеют две точки если расстояние от

В Госдуме предложили доплачивать учителям за работу в классах, где выявлен ковид

Время чтения: 1 минута

Прямая и окружность имеют две точки если расстояние от

В Томске студентов вузов перевели на дистанционное обучение до конца февраля

Время чтения: 1 минута

Прямая и окружность имеют две точки если расстояние от

Во Владивостоке средние классы школ переводят на дистанционное обучение

Время чтения: 1 минута

Прямая и окружность имеют две точки если расстояние от

Полный перевод школ на дистанционное обучение не планируется

Время чтения: 1 минута

Прямая и окружность имеют две точки если расстояние от

В Курской области с 7 по 20 февраля ввели дистанционное обучение для школьников

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

📸 Видео

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

9 класс, 7 урок, Уравнение прямойСкачать

9 класс, 7 урок, Уравнение прямой

8 класс, 31 урок, Взаимное расположение прямой и окружностиСкачать

8 класс, 31 урок, Взаимное расположение прямой и окружности

Точка, прямая и отрезок. 1 часть. 7 класс.Скачать

Точка, прямая и отрезок. 1 часть. 7 класс.

Взаимное расположение и точки пересечения прямой и окружностиСкачать

Взаимное расположение и точки пересечения прямой и окружности

9 класс, 8 урок, Взаимное расположение двух окружностейСкачать

9 класс, 8 урок, Взаимное расположение двух окружностей

Взаимное расположение прямой и окружности | Геометрия 7-9 класс #68 | ИнфоурокСкачать

Взаимное расположение прямой и окружности  | Геометрия 7-9 класс #68 | Инфоурок

№632. Расстояние от точки А до центра окружности меньше радиуса окружности. Докажите, что любаяСкачать

№632. Расстояние от точки А до центра окружности меньше радиуса окружности. Докажите, что любая

Составляем уравнение прямой по точкамСкачать

Составляем уравнение прямой по точкам
Поделиться или сохранить к себе: