Проведите прямую которая пересекая окружность рисунок
Обновлено
Поделиться
Начертите окружность с центром в точке О и радиусом 3 см. Проведите прямую, пересекающую окружность. Обозначьте точки пересечения прямой и окружности буквами
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать
Касательная к окружности
О чем эта статья:
Видео:Стереометрия 10 класс. Часть 1 | МатематикаСкачать
Касательная к окружности, секущая и хорда — в чем разница
В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.
Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.
Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).
Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.
Видео:7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать
Свойства касательной к окружности
Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.
Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.
Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:
окружность с центральной точкой А;
прямая а — касательная к ней;
радиус АВ, проведенный к касательной.
Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. а ⟂ АВ.
Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.
В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.
Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.
Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.
Задача
У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.
Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.
Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.
Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.
Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.
Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.
Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.
Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.
Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.
Задача 1
У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.
Решение
Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.
∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).
Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:
∠BDC = ∠BDA × 2 = 30° × 2 = 60°
Итак, угол между касательными составляет 60°.
Задача 2
К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.
Решение
Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.
Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.
∠МNК = (180° — ∠МКN) : 2 = (180° — 50°) : 2 = 65°
Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.
Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.
Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.
Задача 1
Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.
Решение
Исходя из соотношения касательной и секущей МА 2 = МВ × МС.
Найдем длину внешней части секущей:
МС = МВ — ВС = 16 — 12 = 4 (см)
МА 2 = МВ × МС = 16 х 4 = 64
Задача 2
Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.
Решение
Допустим, что МО = у, а радиус окружности обозначим как R.
В таком случае МВ = у + R, а МС = у – R.
Поскольку МВ = 2 МА, значит:
МА = МВ : 2 = (у + R) : 2
Согласно теореме о касательной и секущей, МА 2 = МВ × МС.
(у + R) 2 : 4 = (у + R) × (у — R)
Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:
Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).
Ответ: MO = 10 см.
Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.
Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда AВ. Отметим на касательной прямой точку C, чтобы получился угол AВC.
Задача 1
Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.
Решение
Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.
АВ = ∠АВС × 2 = 32° × 2 = 64°
Задача 2
У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.
Решение
Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:
КМ = 2 ∠МКВ = 2 х 84° = 168°
Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.
∠ОКМ = ∠ОМК = (180° — ∠КОМ) : 2
Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:
∠ОМК = (180° — ∠КОМ) : 2 = (180° — 168°) : 2 = 6°
Видео:Точка, прямая и отрезок. 1 часть. 7 класс.Скачать
22. Окружность и круг — ГДЗ учебник 5 класс Виленкин Жохов Чесноков Шварцбурд
850. Какие из точек, отмеченных на рисунке 97:
а) лежат на окружности
б) лежат внутри круга
в) не лежат внутри круга
г) лежат вне круга
851. Отметьте в тетради точку O. Постройте окружность с центром в этой точке. Измерьте радиус окружности. Чему равен ее диаметр?
852. Начертите окружность и отметьте на ней три точки A, B, и C. Назовите дуги, на которые эти точки делят окружность.
853. Изобразите круг, радиус которого 3 см. Отметьте точку А внутри круга и точку В вне круга. Измерьте расстояние от центра круга до точки А и до точки В. Сравните эти расстояния с радиусом круга. Соедините точки А и В отрезком. Пересекается ли он с окружностью?
854. Начертите окружность с центром в точке О и радиусом 3 см 5 мм. Проведите прямую, которая пересекает окружность в точках М и К. На каком расстоянии от центра окружности находятся эти точки.
855. Начертите отрезок CD, равный 5 см. Проведите окружность с центром С и радиусом 3 см, а также другую окружность с центром D и радиусом 3 см. Обозначьте точки пересечения окружностей буквами А и В. Чему равны длины отрезков АС, СВ, DA и BD?
856. Начертите отрезок МР, равный 6 см. Найдите две точки А и В, которые находились бы на расстоянии 4 см от точки М и 5 см от точки Р.
857. Автомобиль приближается к городу, по улицам которого разрешается ехать со скоростью не более чем 60 км/ч. В кабине автомобиля установлен спидометр — прибор, показывающий скорость движения. Посмотрите на спидометр (рис. 98). Наришут ли шофер правила уличного движения, если снизит скорость? На сколько и в какую сторону передвинется стрелка, когда скорость снизится до 50 км/ч? Каким будет показание спидометра, когда автомобиль остановится?
Ответ: Скорость автомобиля 90 км/ч. Если шофер не снизит скорость, то он нарушит правила уличного движения . При снижении скорости до 50 км/ч стрелка передвинется влево на 4 деления. При остановке автомобиля спидометр покажет 0 км/ч.
858. На рисунке 99 изображена шкала прибора, показывающего, сколько литров бензина осталось в баке автомобиля. Сколько литров бензина сейчас в баке? На сколько делений и в какую сторону передвинется стрелка прибора, если:
а) в бензобак нальют еще 20 л бензина
б) при движении будет израсходовано 30 л бензина
Ответ: Сейчас в баке автомобиля 40 л бензина.
а) 40+20=60(л) — бензина станет в бензобаке. Стрелка прибора передвинется вправо на 6 делений
б) 40-30=10(л) — бензина станет в бензобаке. Стрелка прибора передвинется влево на 9 делений
859. Какое время показывают часы на рисунке 96? Какое время будут показывать часы, если минутную стрелку передвинуть:
а) назад на 3 больших деления
б) вперед на 20 малых делений
Ответ: Часы показывают время 3ч 30мин
а) часы покажут 3ч 15мин
б) часы покажут 3ч 50мин
860. Вычислите устно
в) 250, 25, 1000, 700
г) здесь ошибка в условии. Если 490:7, то 7, 140, 350, 7
д) 400, 8, 1000, 840
861. Миллион уменьшили в 100 раз и результат уменьшили на тысячу. Сколько получили?
862. Укажите координаты точек A, B, C и D, если М(10) (рис. 100). Сравните координаты точек B и C, C и D.
Решение: Одна клетка соответствует двум единичным отрезкам. В(6), С(17), А(24), D(28)
863. Сколько сантиметров:
а) в четверти метра
б) в десятой доле дециметра
в) в десятой доле метра
г) в двадцать пятой доле метра
864. Сколько килограммов:
а) в десятой доле центнера
б) в сотой доле тонны
в) в двадцатой доле центнера
г) в двадцатой доле тонны
865. Представьте себе, что один куб с ребром 1 дм разрезали на кубики с ребром 1 см и из этих маленьких кубиков сложили башню, поставив их один на другой. Второй куб с ребром 1 дм разрезали на кубики с ребром 1 мм и из этих кубиков так же сложили башню. Какая из этих башен выше? Во сколько раз?
866. Проверьте, справедливы ли равенства:
Попробуйте рассказать, какоа в этих равенствах зависимость между квадратами и кубами чисел. Проверьте, выполняется ли это свойство для пяти, шести чисел.
867. Найдите объем и площадь наружной поверхности бака без крышки, изображенного на рисунке 101. Сколько понадобится краски, чтобы покрасить этот бак снаружи и изнутри, если на покраску 1 дм 2 нужно 2 кг краски? Сколько литров бензина можно влить в этот бак?
868. Сторона одного куба 9 см, а другого 5 см. На сколько объем первого куба больше объема второго? На сколько площадь поверхности первого куба больше площади поверхности второго?
869. Найдите площадь фигуры, изображенной на рисунке 102. Площадь одной клетки 25 мм 2 .
Решение: Фигура состоит из 15 полных клеток и 4 неполных, причем 4 неполных клетки образуют 2 полные. То есть, всего 17 полных клеток.